Изображение задания 860 Написать уравнение касательной к графику функции у = f (х) в точке с абсциссой х0:1) f(x)=x2+x+1,x0=1;2) f(x)=x-3x,x0=2;3) f(x)=1/x,x0=3;4)...
Решение #1
Изображение 860 Написать уравнение касательной к графику функции у = f (х) в точке с абсциссой х0:1) f(x)=x2+x+1,x0=1;2) f(x)=x-3x,x0=2;3) f(x)=1/x,x0=3;4)...
Дополнительное изображение
Дополнительное изображение
Дополнительное изображение
Решение #2
Изображение 860 Написать уравнение касательной к графику функции у = f (х) в точке с абсциссой х0:1) f(x)=x2+x+1,x0=1;2) f(x)=x-3x,x0=2;3) f(x)=1/x,x0=3;4)...
Загрузка...
860 Написать уравнение касательной к графику функции у = f (х) в точке с абсциссой х0:
Сумма внутренних углов выпуклого многоугольника равна 180(n-2), где n- число сторон в многоугольнике.Возьмем любой многоугольник и поставим внутри его точку О. Затем эту точку О соединим со всеми вершинами многоугольника. Получится n треугольников, где n - число сторон многоугольника. Сумма углов в треугольнике равна 180 градусов. А сумма углов в n треугольниках будет равна 180n. А сумма углоа вокруг точки О равна 360 градусов. И если мы из 180n вычтем сумму углов вокруг точки О, то получится 180n - 360 = 180(n-2).
Упр.860 по алгебре
Алимов 10-11 класс с пояснениями бесплатно
Изображение задания 860 Написать уравнение касательной к графику функции у = f (х) в точке с абсциссой х0:1) f(x)=x2+x+1,x0=1;2) f(x)=x-3x,x0=2;3) f(x)=1/x,x0=3;4)...
Решение #1
Изображение 860 Написать уравнение касательной к графику функции у = f (х) в точке с абсциссой х0:1) f(x)=x2+x+1,x0=1;2) f(x)=x-3x,x0=2;3) f(x)=1/x,x0=3;4)...
Дополнительное изображение
Дополнительное изображение
Дополнительное изображение
Решение #2
Изображение 860 Написать уравнение касательной к графику функции у = f (х) в точке с абсциссой х0:1) f(x)=x2+x+1,x0=1;2) f(x)=x-3x,x0=2;3) f(x)=1/x,x0=3;4)...
Загрузка...
860 Написать уравнение касательной к графику функции у = f (х) в точке с абсциссой х0:
1) f(x)=x2+x+1,x0=1;
2) f(x)=x-3x,x0=2;
3) f(x)=1/x,x0=3;
4) f(x)=1/x,x0=-2;
5) f(x)=sinx,x0=пи/4;
Объяснение: