pusti budet x i y storoni
{x+y=31
x*y=210,
{x=31-y
(31-y)y=210
31y-y2=210
-y2+31y-210=0
d=31^2-4*210=121
y1=10
y2=21
znachit odna storona rovna 10 a vtaraja naidem:
x+10=31
x=21
Otvet:10 i 21
Строим угол C, равный данному углу Е. Для этого
строим луч СН;
проводим дуги с произвольным, но одинаковым радиусом с центрами в точках Е и С.;
D и F - точки пересечения дуги со сторонами угла Е, К - точка пересечения дуги с лучом СН;
проводим дугу с центром в точке F, радиусом FD, затем с тем же радиусом с центром в точке К. Точка пересечения дуг - L.
Проводим луч CL. Угол LCK равен данному углу Е.
На луче СН откладываем отрезок СА = b.
На луче CL откладываем отрезок СВ = а. Соединяем точки А и В.
Треугольник АВС - искомый.
9
Объяснение:
Чертеж во вложении.
Пусть МА и МВ - две касательные. О-центр окружности, ОА - радиус.
По свойству касательных ОА⊥МА, ОВ⊥МВ.
В силу равенства прямоугольных треугольников МОА и МОВ по гипотенузе и катету, углы АМО и ВМО также будут равны. Значит, MO- биссектриса угла АМВ и угла АОВ.
Пусть Н - точка пересечения биссектрисы МО и хорды АВ. Т.к. МА=МВ, то треугольник АМВ - равнобедренный, тогда МН-высота и медиана. Значит, АН=ВН=7,2 см.
В треугольнике АНМ по теореме Пифагора
Т.к. АН-высота прямоугольного ∆ОАМ, то АН²=OH·НМ
7,2²=ОН·9,6
ОН=51,84/9,6=5,4
В треугольнике АНО по теореме Пифагора
С системы уравнений
Длина-х, ширина-у, тогда 2(х+у)=62 2х+2у=62|2 х+у=31 у=31-х
ху=210 ху=210 ху=210
Теперь подставим во второе: х(31-х)=210
-х^2+31x-210=0|-1
x^2-31x+210=0
D=961-4*210=121=11
x1=31+11/2=21 x2=31-11/2=10
y1=31-21=10 y2=31-10=21 (21,10)(10,21)
ответ: длина-21, ширина-10 или длина-10, ширина-21.