6х^2-3x =0 вынесем общий множитель за скобки: 1) 3x(2x-1)=0 произведение двух множителей равно 0, если один из них или оба равны 0: 3х=0 или 2х-1=0 первый корень х=0 2х-1=0 2х=1 х=1/2 - второй корень. 2)25х^2=1 x^2=1/25 x=+- 5 3)4x^2+7x-2=0 вычислим дискриминант D=b^2-4ac D=49+32=81 x=(-7+-9)/8 x первое =-2, х второе х=2/8=1/4 4)4x^2+20x+1=0 D=400-16=384 x=(-20+-VD):8 V - обозначение квадратного корня 5) 3x^2 + 2x + 1 =0 D=4-12=-8<0 уравнение решений не имеет, т.к дискриминант отрицательный 6) х^2 + 2,5x -3=0 D= 2,5^2-4*1*(-3)=18,25 x=( -2,5+- VD):2 7) x^4 -13x^2 +36=0 введем обозначение x^2= t, получим новое уравнение t^2 -13t +36=0 D= 169+144=313 К сожалению, корень квадратный из дискриминанта не извлекается. Надо проверить правильность условия, потому что нам нужно решит уравнение х^2=t и найти х.
Пусть расстояние от В до точки встречи S км/ч. Скорость первого велосипедиста Х км/ч, скорость второго Х-5 км/ч. Тогда первый за 1 час 20 минут (4/3 часа) проехал расстояние (18+S) км:
(18+S) / x = 4/3 отсюда Х = 3 * (18+S) / 4
За это же время (4/3 часа) второй велосипедист проехал Расстояние 18-S км:
Проверка: первый за 4/3 часа проехал 18+10/3 = 64/3 км. Его скорость 64/3 / (4/3) = 16 км/ч. Скорость второго 16-5=11 км/ч. За 4/3 часа он проехал 11 * (4/3) = 44/3 км (считая от пункта А). 18 - 44/3 = 10/3 км от пункта В
Дано:
b1 = 8, q = -2
Найти:
S₃ - ?
S₃ = b1*(q³-1) / q - 1
S₃ = 8 * ( (-8) - 1 ) / 2
S₃ = 8 * ( - 9 ) / 2
S₃ = 8 * (-4,5)
S₃ = -36
ответ: -36