М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Alexandr201755
Alexandr201755
02.11.2022 10:00 •  Алгебра

Найдите наибольшее и наименьшее натуральное значения n при которых уравнение: имеет натуральные решения. объясните на уровне 9 класса, как решать такие .

👇
Ответ:
Veroni4ka7090
Veroni4ka7090
02.11.2022
(x^2+y^2)^2010=(xy)^n
при х и у = 1 , наше уравнение очевидно не справедливо , 
x^2+y^2=(x+y)^2-2xy  
видно что x^2+y^2>2xy .но только при  x=y  => x^2+y^2>=2xy
соответственно если мы  возведем левую часть в 2010 степень она будет больше правой,  при х не = у 
(x^2+y^2)^2010>=(2xy)^2010  , следовательно n>=2010. при х  не = у  

То есть мы по сути должны для начало  решить в целом наше уравнение , показать при каких значениях существует решение!

так как мы сказали раннее что n>=2010, то при n=2010,
(x^2+y^2)^2010=(xy)^2010
x^2+y^2=xy
(x+y)^2-2xy=xy
(x+y)^2=3xy
слева число будет точным квадратом какого то числа  , а справа чтобы был квадратом нужно чтобы xy=3,  иначе квадрат не получиться, что противоречит  выражению стоящему слева!
Следовательно  n>2010 
Пусть х=y . тогда 
(x^2+y^2)^2010=(xy)^n
(2x^2)^2010 =x^(2n)
2^2010*x^4020=x^2n
2^2010=x^(2n-4020)
Так как слева стоит четное числа и как видно в геом прогрессий с знаменателем 2;  то справа значит будет тоже  четное и х=2^k, где к=1,2,4,8,16,,,
Так как  пусть  x числа четное 10,12,14 ,,, но не степень  двойки тогда она  должна делиться на числа 2,4,8,16,32,,, !

2^2010=x^(2n-4020)
2^2010=2^(2n-4020)
n=3015,  но  наибольшее ли оно , так как 
1005=k(n-2010)
то "k" отудого делитель  1005 но так как "k"  четное и степень 2 , то это невозможно ,следовательно это оно может равняться только 1!
Значит это будет и наибольшим !
Попробуем при тех же самых х=у  найти минимальное!  то есть я не уверен и уверен что есть 
(x^2+y^2)^2010=(xy)^n
2^2010=x^(2n-4020)
так как  было сказано что x=2.4.8.16
1005= k(n-2010)
очевидно решение при n=2011. k=1  так как k>0 
отудого x^2=2^2010 => x=2^1005. 

Теперь рассмотрим при х>y
(x^2+y^2)^2010=(xy)^n
но так как 
x^2+y^2 > 2xy 
то есть при разных х , у   оно не имеет    решений!

P.S в таких задачах главное  преобразовать уравнение в  более простое, проверить  решения при х=у,  х>y. Что то заметить и так далее!
4,4(56 оценок)
Ответ:
daulrtutegenov1
daulrtutegenov1
02.11.2022
При любом n пара x = 1, y = 1 не является решением.
Поэтому (xy)^n = (x^2+y^2)^2010 (2xy)^2010  (xy)^2010`. Значит, n > 2010.
Предположим, что `x ne y`. Тогда найдется простое число p, такое что `x = p^k a`, `y = p^m b`, и числа a и b не делятся на p. Для определенности можно считать, что `k gt m ge 0`.
Тогда `(p^(2k) a^2 + p^(2m) b^2)^2010 = (p^(k+m)ab)^n`; `(p^(2(k-m)) a^2 + b^2)^2010 = a^nb^np^(n(k+m)-2m*2010)` (1)
Из условий n > 2010 и k > m получаем: n(k+m) - 2m*2010 = (nk-2010m) + m(n-2010) > 0 .
Значит, правая часть равенства (1) - целое число, которое делится на p. Левая часть на p не делится. Противоречие.
Пусть теперь x = y , тогда из равенства `(x^2+y^2)^2010 = (x^2)^n` получаем: `x^(n-2010) = 2^1005`. Откуда `x = 2^q = 0,1,2,...` и q(n - 2010) = 1005 .
Поэтому n - 2010 натуральный делитель числа 1005. По условию нас интересуют только наименьшее и наибольшее возможное значение n. Поэтому нужно взять n - 2010 = 1 и n - 2010 = 1005, откуда n = 2011 и n = 3015, При n = 2011 x = y = 2^1005, при n = 3015 x = y = 2.

ответ: 2011, 3015
4,8(35 оценок)
Открыть все ответы
Ответ:
zaobogdan
zaobogdan
02.11.2022

Нужно воспользоваться формулой разности квадратов практически во всех примерах: (a - b)(a + b) = a² - b².

Выполните умножение:

1) 5b(b - 1)(b + 1) = 5b(b² - 1) = 5b³ - 5b;

2) (c + 2)(c - 2) · 8c² = (c² - 4) · 8c² = 8c⁴ - 32c²;

3) (m - 10)(m² + 100)(m + 10) =  (m - 10)(m + 10)(m² + 100) =

    = (m² - 100)(m² + 100) = m⁴ - 10 000;

4) (a² + 1)(a² - 1)(a⁴ + 1) = (a⁴ - 1)(a⁴ + 1) = a⁸ - 1;

Упростите выражение:

1) (x + 1)(x - 1) - (x + 5)(x - 5) + (x + 1)(x - 5) = x² - 1 - (x² - 25) + x² - 5x + x - 5 = x² - 1 - x² + 25 + x² - 4x - 5 = x² - 4x + 19;

2) 81a⁸ - (3a² - b³)(9a⁴ + b⁶)(3a² + b³) = 81a⁸ - (3a² - b³)(3a² + b³)(9a⁴ + b⁶) = 81a⁸ - (9a⁴ - b⁶)(9a⁴ + b⁶) = 81a⁸ - (81a⁸ - b¹²) = 81a⁸ - 81a⁸ + b¹² = b¹².

4,7(2 оценок)
Ответ:
Tatuhenka3
Tatuhenka3
02.11.2022
Log(16;3x-1)<2
(log16;3x-1)=2
(3x-1)^2=16
x1=-1
x2=5/3
проверяем корни под условия 3x-1>0 и 3x-1≠1
под них подходит только корень x=5/3
рассмотрим 2 случая
I)0<3x-1<1
1<3x<2
1/3<x<2/3
в этот промежуток наш корень x=5/3 не входит, значит, функция y=log(16;3x-1)-2 на этом промежутке знакопостоянна. Остается определить этот знак. Для этого возьмём x=0.4, который входит в промежуток 1/3<x<2/3 и найдем для него знак функции. log(16;0.2)-2<0, т.к. log(16;0.2) тоже отрицательно, значит, промежуток (1/3;2/3) является решением исходного неравенства
II)3x-1>1
3x>2
x>2/3
т.к. корень функции y=log(16;3x-1)-2 ( x=5/3) входит в этот промежуток, то функция у нас принимает и положительный, и отрицательный знак. нам надо найти, при каких значениях отрицательный знак, так как мы решаем неравенство log(16;3x-1)-2<0
для этого возьмём x=17/3 и получим log(16;17*3/3-1)-2=-1, а т.к. 17/3>5/3 и при 17/3 функция принимает отрицательный знак, то и при любом x>5/3 функция принимает отрицательный знак, значит, решение (5/3;+∞) нам тоже подходит
ответ:1/3<x<2/3; x>5/3
4,8(14 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ