Найдем производную:
2x*(x-2)-x^2*1 // (x-2)^2 = x^2-4x // (x-2)^2
приравниваем производную к нулю
x=0; x=4; x не равно 2
На оси Ох отмечаем точки 0, 4 (жирным), точка х=2 - выколота. Причем промежутки между точкой x=2 будут с одним знаком. Расставляем знаки
+ - - +
*о*>x
0 2 4
Там где плюс функция возрастает, где минус - убывает. Получаем:
Функция возрастает на промежутке: (-беск;0]U [4;+беск)
Функция убывает на промежутке: [0;2)U(2;4]
Точка максимума х=0; точка минимума х=4
В точке х=2 функция не определена
В решении.
Объяснение:
3. Решите систему неравенств:
2х²+3х-5˃0
4х-5≥0
Решить первое неравенство:
2х² + 3х - 5 ˃ 0
Приравнять к нулю и решить квадратное уравнение:
2х² + 3х - 5 = 0
D=b²-4ac =9 + 40 = 49 √D=7
х₁=(-b-√D)/2a
х₁=(-3-7)/4
х₁= -10/4
х₁= -2,5;
х₂=(-b+√D)/2a
х₂=(-3+7)/4
х₂=4/4
х₂=1.
Уравнение квадратичной функции, график - парабола, ветви направлены вверх, парабола пересекает ось Ох в точках х = -2,5 и х= 1.
Решение первого неравенства х∈(-∞; -2,5)∪(1; +∞).
Неравенство строгое, скобки круглые.
Решить второе неравенство:
4х - 5 ≥ 0
4х >= 5
x >= 5/4
x >= 1,25;
Решение второго неравенства х∈[1,25; +∞).
Неравенство нестрогое, скобка квадратная, а у знаков бесконечности скобки всегда круглые.
Теперь отметить решения неравенств на числовой оси и найти пересечение решений, то есть, решения, которые подойдут двум неравенствам.
Решение первого неравенства х∈(-∞; -2,5)∪(1; +∞).
Штриховка от - бесконечности до -2,5 и от 1 до + бесконечности.
Решение второго неравенства х∈[1,25; +∞).
Штриховка от 1,25 до + бесконечности.
-∞ -2,5 1 1,25 +∞
Пересечение решений (двойная штриховка) х∈[1,25; +∞) - решение системы неравенств. На числовой прямой возле 1,25 кружочек закрашенный.