1.решить уравнение: 2cos^2x-sinx-1=0. 2.докажите,что функция у=(2х+5)^10 удовлетворяет соотношению 8000у(2х+5)^17-(у')^3=0. 3.найдите знаменатель бесконечно убывающей прогрессии,у которой каждый член в 6 раз больше суммы всех её последующих членов.
1) Боря берет конфеты по арифметической прогрессии: 1, 3, 5, ... a1(1) = 1; d1 = 2 Миша - тоже по арифметической прогрессии a2(1) = 2; d2 = 2 Всего Боря взял S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60 7 < n < 8 Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13. И у Бори получилось S1(7) = 7^2 = 49 конфет. Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11. Миша последний раз взял 14. Это тоже 7-ой раз. Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56 Всего конфет было 60 + 56 = 116
2) 231 = 3*7*11 На каждом этаже квартир больше 2, но меньше 7, то есть 3. Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира. Квартира номер 42 - последняя во 2 подъезде. Квартир с номерами больше 42 во 2 подъезде нет. Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры. Квартира номер 42 - последняя на 3 этаже.
Обозначим первое число через t, а второе число через c. В формулировке условия к данному заданию сообщается, что утроенная разность двух данных чисел на 5 больше их суммы, следовательно, имеет место следующее соотношение: 3 * (t - c) = t + c + 5. Также в условии задачи сказано, что удвоенная разность двух данных чисел на 13 больше их суммы 2 * (t - c) = t + c + 13. Решаем полученную систему из двух уравнений. Упрощая первое уравнение, получаем: 3t - 3c = t + c + 5; 3t - t = 3c + c + 5; 2t = 4c + 5; t = 2c + 2.5. Подставляя найденное значение t = 2c + 2.5 во второе уравнение системы, получаем: 2 * (2c + 2.5 - c) = 2c + 2.5 + c + 13; 2 * (c + 2.5) = 3c + 15.5; 2с + 5 = 3c + 15.5; 2с - 3с = 15.5 - 5; с = -10.5. Находим t: t = 2c + 2.5 = 2 * (-10.5) + 2.5 = -21 + 2.5 = -18.5. ответ: -18.5 и -10.5.
Решим это уравнение как квадратное уравнение относительно sinx
2. Производная функции:
Что и нужно было доказать.
3.
ответ: 1/7.