скорость моторной лодки от пристани до острова равна 50 км/ч.
1. x км/ч – скорость, с которой моторная лодка плыла от пристани до острова.
2. Составляем уравнение.
150 / x = 150 / (x + 10) + 0,5;
150 / x – 150 / (x + 10) = 0,5;
(150 * (x + 10) – 150x) / (x^2 + 10x) = 0,5;
(150x + 1500 – 150x) / (x^2 + 10x) = 0,5;
1500 = 0,5 * (x^2 + 10x);
0,5x^2 + 5x – 1500 = 0;
x^2 + 10x – 3000 = 0;
Дискриминант = 10 * 10 + 4 * 1 * 3000 = 12100 (корень из 12100 равен 110)
x = (-10 + 110) / 2 или x = (-10 - 110) / 2;
x ¹ = 50 или x = -60;
²
Так как скорость не может быть отрицательной, то она равна 50 км/ч.
ответ:Нам нужно разложить на множители выражение ac - ad - 5bc + 5bd для этого сгруппируем попарно первое со вторым и третье с четвертым слагаемые и вынесем общий множитель за скобки.
ac - ad - 5bc + 5bd = (ac - ad) - (5bc - 5bd);
Из первой скобки вынесем a, а из второй 5b, получим:
(ac - ad) - (5bc - 5bd) = a(c - d) - 5b(c - d).
Рассмотрим полученное выражение. В результате мы получили разность двух выражений каждое из которых содержит скобку (c - d), вынесем ее как общий множитель.
a(c - d) - 5b(c - d) = (с - d)(a - 5b).
ответ: (с - d)(a - 5b).
Объяснение: