В решении.
Объяснение:
1)Является ли вид одночлена 36аb^2*ac*3*e^3 стандартным? ответ обоснуйте. В случае, если вид не стандартный, приведите одночлен к стандартному виду.
Одночленом называется выражение, которое содержит числа, натуральные степени переменных и их произведения, и при этом не содержит никаких других действий с этими числами и переменными.
Одночлен называется представленным в стандартном виде , если он представлен в виде произведения числового множителя на первом месте и степеней различных переменных. Числовой множитель у одночлена стандартного вида называется коэффициентом одночлена, сумму показателей степени переменных называют степенью одночлена.
36аb²*ac*3*e³; 108а²b²ce³ - станд. вид.
2)Для одночлена 6x²*y³*0,5z укажите коэффициент и степень.
3x²y³z - станд. вид; коэф. 3; степень 2+3+1=6.
3)Среди выражений выберите одночлены, перечислите их: 4xy; -0,5x²y; 64; x+8; 0; a/7; 1-x; 7/x; 0,2x*4y; (-2y)/8. Свой ответ обоснуйте.
К одночленам относятся числа, переменные, а также их степени с натуральным показателем и разные виды произведений, составленные из них.
4)Для одночлена abc укажите коэффициент и степень. Коэф. 1 , степень 1+1+1=3.
5) Верно ли утверждение, что степень одночлена - это самая большая степень его переменной? ответ обоснуйте .
Нет, не верно. Сумму показателей степени переменных называют степенью одночлена.
D= 49 - 4*(-9)*2 = 49+72 = 121 (т.е. 11^2)
Находим сами корни:
х1 = (7+11):4 =
х2 = (7-11):4 = -1
Далее необходимо отметить эти точки на координатном луче (и они выколоты, потому что знак неравенства строго "меньше")
Они делят этот луч на три промежутка, два крайних из которых имеют знак "+". А тот, что в середине, под знаком "-". Так как неравенство МЕНЬШЕ нуля, выбираем промежуток в середине, множество чисел которого и является решением. То есть ответ будет выглядеть так:
х (знак принадлежности, в дальнейшем будем обозначать его @) (-1 ; 4,5)
Едем дальше.
Б) Ну тут вообще просто)) Корнем 49 является что? Правильно, "+ -7". Тут даже и решать-то нечего:
х @ ( - %(бесконечность) ; -7)U(7 ; + %)
В) Здесь алгоритм тот же, что и первом примере. Разве что на координатном луче надо выбрать крайние промежутки, потому как в неравенстве стоит знак "больше") То есть:
х @ ( - % ; х1) U (х2 ; + %).
На всякий случай:
При условии, что уравнение имеет вид
Удачи :)