Пусть зарплата мамы составляет х рублей, зарплата папы - у рублей, а бабушки – z рублей. Если маме увеличат зарплату на 20% (20/100x=0,2х), доход семьи возрастет на 6 % (6/100=0,06), Если папе увеличат зарплату на 20% (20/100x=0,2y), доход семьи возрастет на 10 % (10/100=0,1), Если бабушке увеличат зарплату на 20% (20/100x=0,2z), доход семьи возрастет на 3200 рублей.
Составим систему уравнений (не забудьте обозначить ее скобкой): 0,2х=0,06 (x+y+z) 0,2у=0,1 (x+y+z) 0,2z=3200
Решим последнее уравнение: 0,2z=3200 z=3200:0,2=16000 (рублей) – зарплата бабушки.
Подставим это значения в первые два уравнения: 0,2х=0,06 (x+y+16000) 0,2у=0,1 (x+y+16000)
ОДЗ:
{x^2>0; x e R, но х не равен нулю
{6x+27>0; 6x>-27; x>-4,5
x e (-4,5; 0) U (0; + беск.)
x^2<6x+27
x^2-6x-27<0
x^2-6x-27=0
D=(-6)^2-4*1*(-27)=144
x1=(6-12)/2=-3; x2=(6+12)/2=9
+(-3)-(9)+
x e (-3; 9)
С учетом ОДЗ: x e (-3;0)U(0;9)
ответ: -2
2) log7(log3(log3(x)))<=0
ОДЗ:
log3(log3(x))>0
log3(log3(x))> log3(1)
log3(x)>1
log3(x)>log3(3)
x>3
log7(log3(log3(x))) <=log7(1)
log3(log3(x))<=1
log3(log3(x))<=log3(3)
log3(x)<=3
log3(x)<=log3(27)
x<=27
С учетом ОДЗ: x e (3; 27]
Неравенству удовлетворяют 24 значений.