Дана система ур-нийx−2y=−12x−2y=−12 7x−10y=77x−10y=7
Из 1-го ур-ния выразим xx−2y=−12x−2y=−12 Перенесем слагаемое с переменной y из левой части в правую со сменой знакаx−2y+2y=−−1⋅2y−12x−2y+2y=−−1⋅2y−12 x=2y−12x=2y−12 Подставим найденное x в 2-е ур-ние7x−10y=77x−10y=7 Получим:−10y+7(2y−12)=7−10y+7(2y−12)=7 4y−84=74y−84=7 Перенесем свободное слагаемое -84 из левой части в правую со сменой знака4y=914y=91 4y=914y=91 Разделим обе части ур-ния на множитель при y4y4=9144y4=914 y=914y=914 Т.к.x=2y−12x=2y−12 тоx=−12+1824x=−12+1824 x=672x=672
при любом значении b решите уравнение : (x^2+(3b+2)X+2b^2 +3b+1) / (x^2 - 5x +4)=0
(x²+(3b+2)x+2b² +3b+1) / (x² - 5x +4)=0 ; ОДЗ: x² - 5x +4≠0 ⇒ [ x ≠ 1 ; x ≠ 4. --- x²+(3b+2)x+2b² +3b+1=0 ; D=(3b+2)² - 4(2b² +3b+1)= b² ≥ 0 всегда имеет решения : x₁ = (-3 b- 2 - b)/2 = -1 - 2b , если -1 - 2b ≠ 1 и -1 - 2b ≠ 4 , т.е. если b ≠ -1 и b ≠ -2,5. x₂ = (- 3b - 2 +b)/2 = -1 - b , опять если -1 - b ≠ 1 b и -1 - b ≠ 4 , . т.е. если b ≠ -2 и b ≠ - 5.
* * * * P.S. Можно было в самом начале для уравнения x²+(3b+2)x+2b² +3b+1=0 исключить x =1 и x = 4 в качестве корней;
1) 1²+(3b+2)1+2b² +3b+1=0 ⇔2b² +6b+4 =0⇔ b² +3b+2 =0 ⇒[ b = -2 ; b = -1 . 2) 4²+(3b+2)4+2b² +3b+1=0⇔2b² +15b+25 =0⇔ [ b = -5 ; b = - 2,5 .
0,(1) = 1/9
0,(36) = 36/99 = 4/11
1,(81) = 1 81/99 = 1 9/11
0,2(3) = 23-2/90 = 21/90 = 7/30
0,32(45) = 3245-32/9900 = 3213/9900 = 357/1100