(6x-4)*(x-4)+(-7x+42)*(x+2)=0
6x²-24x-4x+16-7x²-14x+42x+84=0
-x²+0+100=0
-x²+100=0
-x²=-100
x²=100
x=±10
x=-10
x=10
x¹=-10;x²=10
Объяснение:
Пусть Х часов - время, которое необходимо первому рабочему для выполнения задания.
Тогда время выполнения вторым рабочим равно (Х + 4) часов.
2. Обозначим все задание за 1.
Тогда производительность первого рабочего 1/Х ед/час, второго - 1/(Х + 4) ед/час.
3. По условию задачи сначала первый рабочий работал 2 часа.
Тогда он выполнил 2 * 1/Х = 2/Х часть задания.
Затем второй рабочий работал 3 часа и выполнил 3 * 1/(Х + 4) = 3/(Х + 4) часть задания.
4. Вместе они сделали 1/2 часть работы.
2/Х + 3/(Х + 4) = 1/2.
4 * Х + 16 + 6 * Х = Х * (Х + 4).
Х * Х - 6 * Х - 16 = 0.
Дискриминант D = 6 * 6 + 4 * 16 = 100.
Х = (6 + 10) / 2 = 8 часов - время первого рабочего.
Х + 4 = 8 + 4 = 12 часов - второго.
ответ: За 8 часов может выполнить задание первый рабочий и за 12 часов - второй.
Это двойное нестрогое неравенство.
1≤х + 3/4≤4 I -3/4
1 - 3/4 ≤х + 3/4 - 3/4 ≤4 - 3/4
1/4 ≤ х ≤3 1/4
Целые решения : 1; 2; 3.
Из них простые числа : 2 и 3.
При условии: 1≤ (х+3)/4 ≤4 I *4
1 * 4 ≤ (х+3)/4 * 4 ≤ 4 * 4
4 ≤ х+3 ≤ 16 I -3
4-3 ≤ х+3-3 ≤ 16-3
1 ≤ х ≤ 13
х∈[1; 13]
В этом промежутке простые числа: 2; 3; 5; 7; 11; 13.
ответ: 6 простых чисел в промежутке.
Ставьте скобки)).
розвяжіть рівняння 2(3x-2)(x-4)-7(x-6)(x+2)=0
ответ на фото