В решении.
Объяснение:
Известно , что график функции y=k/x проходит через точку A(-4;-0,25). Проходит ли это график через точку:
а)B(-8;-0,125);
б)C(50;-0,02);
в)D(-40;-0,05)?
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
1) Сначала нужно найти k, чтобы определить уравнение функции.
у=k/x
A(-4;-0,25)
Нужно в уравнение подставить известные значения (координаты точки А):
-0,25 = k/-4
k= (-0,25)*(-4)
k=1;
Уравнение функции имеет вид:
у = 1/х.
2) Теперь можно определять принадлежность точек графику:
а)B(-8;-0,125);
у=1/х
-0,125 = 1/-8
-0,125 = -0,125, проходит.
б)C(50;-0,02);
у=1/х
-0,02 = 1/50
-0,02 ≠ 0,02, не проходит.
в)D(-40;-0,05).
у=1/х
-0,05 = 1/-40
-0,05 ≠ -0,025, не проходит.
Решаем в м и сек.
10 мин. = 600 сек. Вверх по реке - это против течения.
Скорость первого катера против течения:
9 - 1 = 8 м/с, а второго 7- 1 = 6 м/с.
Пусть весь путь равен S, тогда S/6 - S/8 = 600
4S/24 - 3S/24 = 600;
S/24 = 600;
S = 600 · 24 = 14400 метров
Вниз по течению скорость первого катера:
9 + 1 = 10 м/с.
Он проплыл 14400 метров за 14400/10 = 1440 сек
Скорость второго по течению 7 + 1 = 8 м/с.
Он проплыл 14400м за 14400/8 = 1800 сек
1800 - 1440 = 360 сек = 360/60 = 6 минут
ответ: на 6 минут
___ Вроде бы так, если не ошибаюсь.
Решение : ///////////////////////////////