М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
voronkovid
voronkovid
17.04.2022 18:33 •  Алгебра

Задачи на вероятность.
Задача 1. В магазин поступило партия обуви фасона одного размера, но разного цвета. Партия состоит из 40 пар черного цвета, 26 – коричневого и 24 – красного. Коробки с обувью оказались не рассортированными по цвету. Найти вероятность того, что среди трех случайно отобранных коробок окажется:
1) одна коробка с обувью черного цвета;
2) не более одной коробки с обувью красного цвета.

Задача 2.
Два игрока одновременно бросают по одной игральной кости (один ход). Выигравшим считается тот, кто получит большее число очков. Найти вероятность того, что игра закончится не более чем за три хода.

👇
Открыть все ответы
Ответ:
адевале1
адевале1
17.04.2022
Пусть вторая труба наполняет бак за х часов, тогда первая наполнит его за х-2 часа. Отсюда производительность первой трубы 1/(х-2), а второй трубы 1/х. Их общая производительность 1/175/60 (2 часа 55 минут - это 175/60 часа) или 60/175. Можно записать уравнение
1/(х-2)+1/х=60/175
1/(х-2)+1/х-60/175=0
(х+(х-2))*175-60х(х-2)=0
350х-350-60х²+120х=0
Для удобства сократим на 10 и умножим на -1
6х²-47х+35=0
D=(-47)-4*6*35=2209-840=1369
x₁=(47-37)/12=10/12=5/6      x₂=(47+37)/12=7
5/6 часа нам не подходит, уж слишком небольшой промежуток времени, в вот 7 часов как раз то, что надо.
Значит вторая труба наполняет бак за 7 часов, а первая за 7-2=5 часов.
4,4(52 оценок)
Ответ:
Mashka168363838
Mashka168363838
17.04.2022

1) Точки пересечения с осями.
 - с осью Оу: х = 0, у =0^3+0^2-16*0-16 = -16, точка (0; -16).
 - с осью Ох: у = 0.
   x^3+x^2-16x-16 = 0.
   Преобразуем заданное уравнение: 
   у =x^3+x^2-16x-16 = х²(х+1)-16(х+1) = (х²-16)(х+1) = (х-4)(х+4)(х+1).
   у = 0,  (х-4)(х+4)(х+1) = 0.
   Отсюда получаем 3 корня уравнения: х₁ = 4, х = -4, х = -1.

2) Для того, чтобы найти экстремумы, нужно найти производную и  приравнять её нулю и корни этого уравнения будут экстремумами данной функции:
y' = 3x² + 2 x - 16 = 0.

Квадратное уравнение, решаем относительно x: 

Ищем дискриминант:

D=2^2-4*3*(-16)=4-4*3*(-16)=4-12*(-16)=4-(-12*16)=4-(-192)=4+192=196;

Дискриминант больше 0, уравнение имеет 2 корня:

x₁=(√196-2)/(2*3)=(14-2)/(2*3)=12/(2*3)=12/6=2;  

x₂=(-√196-2)/(2*3)=(-14-2)/(2*3)=-16/(2*3)=-16/6=-(8/3) ≈ -2,6667.

Значит, экстремумы в точках:
((-8/3); (400/27)),
(2, -36).

3) Определяем минимумы и максимумы функции и промежутки знакопостоянства.
Для этого находим значения производной вблизи критических точек.
х =    -3    -2.667    -2      1      2      3 
у' =    5        0        -8     -11    0     17.

Где производная меняет знак с + на - там максимум функции ((х=(-8/3); у= (400/27)), а где меняет знак с - на + там минимум функции (х=2; у=-36)).

Функция возрастает на промежутках -∞ < x < (-8/3) и 2 < x < +∞,

а убывает на промежутке (-8/3) < x < 2.


4) Найдем точки перегибов, для этого надо решить уравнение

y'' = 0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции,
y'' = 6x+2 = 2(3x+1) = 0.
3 x + 1 = 0.
Отсюда х = (-1/3).

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов.
Если на интервале вторая производная больше 0 , то функция имеет вогнутость на этом интервале, если вторая производная меньше 0, то функция имеет выпуклость.
x =    -2    -1    -0.33333     0       1
y'' = -10    -4         0           2       8
Вогнутая на промежутках [-1/3, oo),
Выпуклая на промежутках (-oo, -1/3].

 


4,6(30 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ