Объяснение:7x2 + 10x + 5 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 102 - 4·7·5 = 100 - 140 = -40
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 23x + 15 = 0
D = b2 - 4ac = (-23)2 - 4·4·15 = 529 - 240 = 289
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 23 - √289/ 2·4 = 23 - 17 /8 = 6/ 8 = 0.75
x2 = 23 + √289 /2·4 = 23 + 17/ 8 = 40 /8 = 5
25x2 - 40x + 16 = 0
D = b2 - 4ac = (-40)2 - 4·25·16 = 1600 - 1600 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительный корень:
x = 40/ 2·25 = 0.8
Нужно воспользоваться формулой разности квадратов практически во всех примерах: (a - b)(a + b) = a² - b².
Выполните умножение:
1) 5b(b - 1)(b + 1) = 5b(b² - 1) = 5b³ - 5b;
2) (c + 2)(c - 2) · 8c² = (c² - 4) · 8c² = 8c⁴ - 32c²;
3) (m - 10)(m² + 100)(m + 10) = (m - 10)(m + 10)(m² + 100) =
= (m² - 100)(m² + 100) = m⁴ - 10 000;
4) (a² + 1)(a² - 1)(a⁴ + 1) = (a⁴ - 1)(a⁴ + 1) = a⁸ - 1;
Упростите выражение:
1) (x + 1)(x - 1) - (x + 5)(x - 5) + (x + 1)(x - 5) = x² - 1 - (x² - 25) + x² - 5x + x - 5 = x² - 1 - x² + 25 + x² - 4x - 5 = x² - 4x + 19;
2) 81a⁸ - (3a² - b³)(9a⁴ + b⁶)(3a² + b³) = 81a⁸ - (3a² - b³)(3a² + b³)(9a⁴ + b⁶) = 81a⁸ - (9a⁴ - b⁶)(9a⁴ + b⁶) = 81a⁸ - (81a⁸ - b¹²) = 81a⁸ - 81a⁸ + b¹² = b¹².
Объяснение: