1. Построить график. Находим вершину параболы. Приводим к виду:
y = x² - 6*x +5 = (x² - 2*x*3 + 3²)-9 +5 = (x-3)² - 4
Получили уравнение ОБЫЧНОЙ ПАРАБОЛЫ ИКС КВАДРАТ, но с вершиной в точке А(3;-4)
Решив уравнение получаем нули функции - х1 = 1 и х2 = 5.
Рисунок с графиком к задаче в приложении.
ответы на вопросы:
1) У(0,5) = 1/4 - 6*0,5 +5 = 2,25 - ответ
2) Y(x) = -1
Решаем квадратное уравнение
x² - 6x - 6 = 0 и получаем: х1 ≈ 1,3 и х2 ≈ 4,7. (с ГРАФИКА).
Интервалы знакопостоянства.
Y>0 - X∈(-∞;-1]∪[5;+∞) - положительна.
Y<0 - X∈[-1;5] - отрицательна.
Внимание - важно. Функция непрерывная - квадратные скобки в написании интервалов у нулей функции.
Решив уравнение получаем нули функции - х1 = 1 и х2 = 5.
4. Возрастает после минимума - Х∈[3; +∞)
и убывает при Х∈(-∞;3]
Объяснение:
незачто!
1. Выделение полного квадрата
Прибавим и вычтем 4:
x^2 - 4x + 4 - 4 - 30 = 0
Заметим, что x^2 - 4x + 4 = (x - 2)^2, приведем подобные:
(x - 2)^2 - 34 = 0
(x - 2)^2 = 34
Извлекаем корень (я его обозначаю sqrt):
x - 2 = +- sqrt(34)
x = 2 +- sqrt(34)
2. Дискриминант.
Если есть уравнение ax^2 + bx + c = 0, то дискриминант вычисляется по формуле D = b^2 - 4ac, и решение (если D>0) имеет вид x = (-b +- sqrt(D))/2a.
a = 1, b = -4, c = -30.
D = 16 + 120 = 136 = 4 * 34
x = (4 +- sqrt(4 * 34))/2
Можно вынести 4 из под знака корня и сократить на 2:
x = (4 +- 2sqrt(34))/2 = 2 +- sqrt(34)
3. Дискриминант/4
Если уравнение имеет вид ax^2 + 2bx + c = 0, то можно вычислить D* = D/4 = b^2 - ac, решение будет выглядеть так: x = (-b +- sqrt(D*))/a
D* = 4 + 30 = 34
x = (2 +- sqrt(34))/1 = 2 +- sqrt(34)
Последний удобен, если старший коэффициент равен 1 или коэффициент при x чётный.
ответ. x = 2 +- sqrt(34).