В решении.
Объяснение:
Число, выражающее площадь прямоугольника, составляет 120% от числа, выражающего его периметр. Найдите площадь прямоугольника, если его основание на 2 ед. больше его высоты.
а - одна сторона прямоугольника.
в - другая сторона прямоугольника.
S = а * в - площадь прямоугольника.
Р = 2*(а + в) - периметр прямоугольника.
По условию задачи система уравнений:
а = в + 2
а*в = 1,2 * 2(а + в)
Раскрыть скобки:
ав = 2,4а + 2,4в
Подставить значение а в уравнение:
(в + 2)в = 2,4(в + 2) + 2,4в
в² + 2в = 2,4в + 4,8 + 2,4в
Привести подобные члены:
в² - 2,8в - 4,8 = 0, квадратное уравнение, ищем корни:
D=b²-4ac = 7,84 + 19,2 = 27,04 √D= 5,2
в₁=(-b-√D)/2a
в₁=(2,8-5,2)/2
в₁= -2,4/2 = -1,2, отбрасываем, как отрицательный.
в₂=(-b+√D)/2a
в₂=(2,8+5,2)/2
в₂=8/2
в₂=4 (ед) - другая сторона прямоугольника.
а = в + 2
а = 4 + 2
а = 6 (ед) - одна сторона прямоугольника.
Площадь прямоугольника S = а * в = 6 * 4 = 24 (ед²).
Проверка:
Р = 2*(а + в) = 2*(6+4) = 20 (ед²).
20 * 1,2 = 24 (ед²), верно.
Дан треугольник с вершинами A(-4; 0), B(4:0), C(0; 2).
Так как точки даны на осях, то легко определяем длины сторон его.
АВ = 4-(-4) = 8.
АС = ВС = √(4² + 2²) = √(16 + 4) = √20 = 2√5.
Определяем радиус описанной окружности:
R = (abc)/(4S).
Площадь треугольника S = (1/2)*AB*H = (1/2)*8*2 = 8 кв.ед.
Тогда R = (2√5*8*2√5)/(4*8) = 5.
Теперь можно разложить вектор DC по векторам DA и DB, построением параллелограмма.
Проводим диагональ FG.
Из подобия треугольников DOB и DHG находим:
DG = (3/5)DB, DF = (3/5)DA.
Но так как DA = DB, то DG = DF.
ответ: DC = (3/5)(DA + DB).
Объяснение:
-5x²+10=0 // : (-5)
x²-2x=0
x(x-2)=0
x1=0 , x-2=0
x2=2