Відповідь:
Еще недавно, учась сложению чисел, мы складывали кучки из монет. Тогда перед нами стояла задачи сложить две кучки. Но допустим, мы хотим теперь сложить не две, а несколько кучек. Это можно было бы сделать так: сгребаем их все сразу в одну большую кучу и пересчитываем в ней все монеты. Такой сложения всем бы был хорош, да только ни на счетах, ни на бумаге нельзя сделать ничего подобного. На счетах и бумаге мы умеем складывать между собой только два числа. Поэтому мы не будем сгребать вместе сразу все кучки, а поступим так, чтобы все наши действия можно было легко перенести на бумагу.
Итак, перед нами несколько кучек из монет. Мы знаем, сколько монет в каждой кучке, и теперь мы хотим узнать, сколько же у нас всего монет во всех кучках. Мы берем любые две кучки и сдвигаем их вместе, образуя одну новую кучку побольше. Умея складывать два числа на бумаге, мы сможем легко вычислить, сколько у нас монет в новой кучке без фактического их пересчета. Теперь у нас стало на одну кучку меньше. Далее, берем еще две кучки, сливаем их воедино, вычисляем новое число монет в только что образованной кучке и, таким образом, снова уменьшаем количество кучек на одну. Мы повторяем и повторяем эту процедуру, уменьшая всякий раз число кучек на единицу, до тех пор пока у нас не останется одна-единственная большая куча. Число монет в этой куче нам известно, причем вычислили мы его на бумаге, а не прямым пересчетом.
Очевидно, мы получим один и тот же ответ, совершенно независимо от того, в каком порядке мы сдвигали кучки. А значит, когда перед нами находится сумма чисел, например,
8 + 9 + 2, мы можем вычислять ее тоже в любом порядке. Поэтому мы всегда будем выбирать такой порядок, какой для нас наиболее удобен. В данном случае удобно вначале сложить восьмерку и двойку, а потом добавить девятку:
8 + 2 + 9 = 10 + 9 = 19.
1. 3х - 3
2. -11
3. 7х - 1
4. -20
5. 5
6. 2х - 9
7. 2
8. 7х - 10
9. -19
10. 7х - 5
Объяснение:
1. 3(х+4) - (3-х) - х - 4 = 3х + 4 - 3 + х - х - 4 = 3х - 3
2. x + 4 - 5(2-х) - (5+1)х - 5 = х + 4 - 10 + 5х - 5х - х - 5 = 4 - 10 - 5 = -11
3. 4(x+4) - 4(3-х) - x - 5 = 4х + 16 - 12 + 4х - х - 5 = 4х + 4х - х + 16 - 12 - 5 = 7х - 1
4. x + 2 - 4(5-х) - (4+1)х - 2 = х + 2 - 20 + 4х - 4х - х - 2 = -20
5. 2(x+4) - (1-x) - (1+2)х - 2 = 2х + 8 - 1 + х - х - 2х - 2 = 8 - 1 - 2 = 5
6. x + 2 - 2(5-х) - x - 1 = х + 2 - 10 + 2х - х - 1 = 2 - 10 - 1 + 2х = -9 + 2х = 2х - 9
7. 4(x+2) - (1-x) - (1+4)х - 5 = 4х + 8 - 1 + х - х - 4х - 5 = 8 - 1 - 5 = 2
8. 4(х+2) - 4(4-x) - x - 2 = 4х + 8 - 16 + 4х - х - 2 = 4х + 4х - х + 8 - 16 - 2 = 7х - 10
9. 3(х+1) - 4(5-х) - (4+3)х - 2 = 3х + 3 - 20 + 4х - 4х - 3х - 2 = 3 - 20 - 2 = -19
10. 3(x+3) - 5(2-х) - x - 4 = 3х + 9 - 10 + 5х - х - 4 = 3х + 5х - х + 9 - 10 - 4 = 7х - 5
Розвязок для x Відповідь; x=3