Значения на концах отрезка:
y(-3) = (9 + 8)/(-3-1) = -17/4 = -4,25
y(0) = (0 + 8)/(0 - 1) = -8/1 = -8
Точка разрыва x = 1 не входит в промежуток [-3; 0] и нас не интересует.
Экстремум
y'= \frac{2x(x-1) - (x^2+8)*1}{(x-1)^2} = \frac{2x^2-2x-x^2-8}{(x-1)^2} =\frac{x^2-2x-8}{(x-1)^2} = 0y
′
=
(x−1)
2
2x(x−1)−(x
2
+8)∗1
=
(x−1)
2
2x
2
−2x−x
2
−8
=
(x−1)
2
x
2
−2x−8
=0
x^2 - 2x - 8 = (x - 4)(x + 2) = 0
x1 = -2; y(-2)= (4 + 8)/(-2 - 1) = 12/(-3) = -4
x2 = 4 - не входит в промежуток [-3; 0]
ответ: y(-2) = -4 - наибольшее, y(0) = -8 - наименьшее.
Время, за которое первый лыжник преодолел расстояние в 40 км будет:
40/(х-2)=t
Второй лыжник потратил столько же времени, сколько и первый, только преодолел 48 км, его время будет:
48/х=t
Т.к. время первого и второго лыжников равны, получаем уравнение:
t=40/(х-2)=48/х
Решаем это уравнение относительно х:
40 = 48
х-2 х
40*х=48*(х-2)
40х=48х-48*2
40х=48х-96
48х-40х=96
8х=96
х=96:8
х=12 км/ч - скорость второго лыжника.
Скорость первого лыжника на 2 км/ч меньше, чем у второго, т.е.:
12-2=10 км/ч - скорость первого лыжника.