Подставим значение переменной x, данное по условию, в уравнение и найдем значение c, решив полученное линейное уравнение с одной переменной:
2 * (-3)^2 + 7 * (-3) + c = 0;
2 * 9 – 21 + c = 0;
18 – 21 + c = 0;
c – 3 = 0;
c = 3.
Чтобы найти второй корень уравнения, данного по условию, подставим в него найденное значение c и решим полученное уравнение с одной переменной второй степени:
1)Найти область определения функции выражений с корнем четной степени нет знаменатель не равен нулю, значит х-1 не равен 0 значит х - не равен 1 область определения х є (-беск;1) U (1:+беск)
2)Чётность, нечётность функции y(x)=(x+2)^3/(x-1)^2 y(-x)=(-x+2)^3/(-x-1)^2 не равно y(x) y(-x)=(-x+2)^3/(-x-1)^2 не равно -y(x) y(x)=(x+2)^3/(x-1)^2 не является ни четной ни нечетной
3)Непрерывность y(x)=(x+2)^3/(x-1)^2 имеет точку разрыва при х=1
4)Критические точки y(x)=(x+2)^3/(x-1)^2 y'(x)={3*(x+2)^2*(x-1)^2-(x+2)^3*2*(x-1)}/(x-1)^4 = ={3*(x-1)-2*(x+2)}*(x+2)^2/(x-1)^3= =(3x-3-2x-4)*(x+2)^2/(x-1)^3= =(x-7)*(x+2)^2/(x-1)^3
y'(x)=0 при (x-7)*(x+2)^2/(x-1)^3=0 х=-2 x=1 х=7 - критические точки
5)Интервалы возрастания и убывания функции в точках x=1 и х = 7 производная меняет знак
интервалы возрастания х є (7; +беск) U (-2;1) U (-беск ;-2) интервалы убывания х є (1;7)
6)Экстремумы функции в точках x=1 и х = 7 производная меняет знак x=1 - локальный максимум х = 7- локальный минимум
7)Критические точки второго рода x=1 - критические точки 2 рода
8)Интервалы выпуклости и вогнутости функции надо считать вторую производную - лень
9)Точки перегиба то же самое
10)Асимптоты вертикальная асимптота у=1 наклонная асимптота ищем в виде у=ах+в а = lim(y)/x=1 b=lim(y-a*x)=8
Подставим значение переменной x, данное по условию, в уравнение и найдем значение c, решив полученное линейное уравнение с одной переменной:
2 * (-3)^2 + 7 * (-3) + c = 0;
2 * 9 – 21 + c = 0;
18 – 21 + c = 0;
c – 3 = 0;
c = 3.
Чтобы найти второй корень уравнения, данного по условию, подставим в него найденное значение c и решим полученное уравнение с одной переменной второй степени:
2 * x^2 + 7 * x + 3 = 0.
Найдем дискриминант:
D = 7^2 – 4 * 2 * 3 = 49 – 24 = 25.
x1 = (- 7 + 5)/(2 * 2) = - 2/4 = - 1/2;
x2 = (- 7 – 5)/(2 * 2) = - 12/4 = - 3.
ответ: c = 3; x = - 1/2.