Оба графика функций - параболы и у обоих ветви этих парабол направлены вверх, значит, в обоих случаях наименьшее значение функций достигается в вершине параболы. Найдем вершины каждой из них. из формулы ах²+bx+c B(x; y) x(B) = -b / 2a
1) у = х² - 2х + 7 х(В) = 2/2 = 1 у(В) = 1² - 2* 1 + 7 = 1-2+7 = 6 В(1; 6) - вершина => у(1) = 6 - наименьшее значение данной функции у = х² - 2х + 7
2) у = х² - 7 х + 32,5 х(В) = 7/2 = 3,5 у(В) = 3,5² - 7 * 3,5 + 32,5 = 12,25 - 24,5 + 32,5 = 20,25 В(3,5; 20,25) - вершина => у(3,5)=20,25 - наименьшее значение функции у = х² - 7 х + 32,5
ответ:
объяснение:
здесь область допустимых значений состоит только из двух
под первым корнем квадратный трехчлен --парабола, ветви вверх:
2x²-8x+6 ≥ 0
x²-4x+3 ≥ 0 корни: 1 и 3 (по теореме виета)
решение: х ∈ (-∞; 1] u [3; +∞)
под вторым корнем квадратный трехчлен --парабола, ветви вниз:
-x²+4x-3 ≥ 0
x²-4x+3 ≤ 0 корни те же))
решение: х ∈ [1; 3]
пересечением этих двух промежутков (условия должны выполняться одновременно) будет множество из двух точек: х ∈ {1; 3}
легко проверить, что х=1 решением не является, т.к. сумма двух неотрицательных чисел (это квадратные корни) не может быть < 1-1 (меньше нуля)
остается х = 3: √0 + √0 < 3-1 это верно))
ответ: х=3