log3 (x − 3) = 2.
3^2=(x-3)
9=x-3
x=12
можно еще через ОДЗ
x принадлежит (3,+бесконечность)
тогда решаем уравнеие и получаем
-x=-12
x=12
ответ 12
Объяснение:
Вираз {\displaystyle 0^{0}}{\displaystyle 0^{0}} (нуль в нульовому степені) багато підручників вважають невизначеним і позбавленим сенсу[1]. Пов'язано це з тим, що функція двох змінних {\displaystyle f(x,y)=x^{y}}{\displaystyle f(x,y)=x^{y}} в точці {\displaystyle (0,0)}{\displaystyle (0,0)} має неусувний розрив. Справді, уздовж додатного напрямку осі {\displaystyle X,}{\displaystyle X,} де {\displaystyle y=0,}{\displaystyle y=0,} вона дорівнює одиниці, а вздовж додатного напрямку осі {\displaystyle Y,}{\displaystyle Y,} де {\displaystyle x=0,}{\displaystyle x=0,} вона дорівнює нулю. Тому ніяка домовленість про значення {\displaystyle 0^{0}}{\displaystyle 0^{0}} не може дати неперервну в нулі функцію.
Деякі автори пропонують домовитись про те, що цей вираз дорівнює 1.
Объяснение:
2)-0,2х+0,4у=1
-0,2х=1-0,4у умножим на -1, чтобы избавиться от минуса перед х:
0,2х=0,4у-1/0,2 разделим на 0,2, чтобы избавиться от коэффициента перед х:
х= 2у-5 ответ№2
3)В системе, состоящей из уравнений:
5х-9у=38
3х+2у=8
для решения методом сложения нужно: ответ №2:
(5х-9у=38)*3 = 15х-27у=114
(3х+2у=8)*(-5)= -15х-10у= -40
4)Систему, состоящую из уравнений:
2х-3у= -1;
х-5у=3 удобнее решить методом подстановки.
5) Решением системы, состоящей из уравнений:
4х-3у=-11;
10х+5у=35
является: (1; 5)
Подставляем поочерёдно в уравнения заданные значения х и у, левая и правая части уравнений должны быть равны.
Только последняя пара дала результат -11= -11 и 35=35
log3 (x − 3) = 2.
3^2=(x-3)
9=x-3
x=12
при чем здесь ОДЗ ---основание указано четко 3, т.е 3^2