{x=6
y=2
z=5
Объяснение:
Метод Крамера:
Δ=
=2*(-3)*(-1)+1*2*3+(-3)*1*(-4)-(-3)*(-3)*3-1*1*(-1)-2*2*(-4)=14
Δx=
=(-1)*(-3)*(-1)+1*2*5-3*10*(-4)-(-3)*(-3)*5-1*10*(-1)+1*2*(-4)=84
Δy=
=2*10*(-1)+(-1)*2*3+(-3)*1*5-(-3)*10*3-(-1)*1*(-1)-2*2*5=28
Δz=
=2*(-3)*5+1*10*3+(-1)*(-4)*1-(-1)*(-3)*3-1*1*5-2*10*(-4)=70
x=Δx/Δ=84/14=6
y=Δy/Δ=28/14=2
z=Δz/Δ=70/14=5
Метод Гаусса
![\left[\begin{array}{cccc}2&1&-3&-1\\1&-3&2&10\\3&-4&1&5\end{array}\right]](/tpl/images/1693/8997/f48e7.png)
Делим первую строку на 0,5(r1/0.5)
![\left[\begin{array}{cccc}1&0.5&-1.5&-0.5\\1&-3&2&10\\3&-4&1&5\end{array}\right]](/tpl/images/1693/8997/04dff.png)
Далее r3-3r1 и r2-r1
![\left[\begin{array}{cccc}1&0.5&-1.5&-0.5\\0&-3,5&3,5&10,5\\0&-5,5&3,5&6,5\end{array}\right]](/tpl/images/1693/8997/05778.png)
Следующая итерация r2/(-3.5)
![\left[\begin{array}{cccc}1&0.5&-1.5&-0.5\\0&1&-1&-3\\0&-5,5&3,5&6,5\end{array}\right]](/tpl/images/1693/8997/73ae3.png)
cледующий шаг r1-0.5r2 И r3+5.5r2
![\left[\begin{array}{cccc}1&0&-1&1\\0&1&-1&-3\\0&0&1&5\end{array}\right]](/tpl/images/1693/8997/549c0.png)
Последний шаг r1+r3 r2+r3
![\left[\begin{array}{cccc}1&0&0&6\\0&1&0&2\\0&0&1&5\end{array}\right]](/tpl/images/1693/8997/a9f81.png)
{x=6 y=2 z=5
Матричный метод
A=![\left[\begin{array}{ccc}2&1&-3\\1&-3&2\\3&-4&1\end{array}\right]](/tpl/images/1693/8997/a2e58.png)
Δ=
=2*(-3)*(-1)+1*2*3+(-3)*1*(-4)-(-3)*(-3)*3-1*1*(-1)-2*2*(-4)=14
Находим миноры:
M11=
=11
M12=
=-7
М13=
=5
M21=
=-13
M22=
=7
M23=
=-11
M31=
=-7
M32=
=7
M33=
=-7
A11=11 A12=7 A13=5
A21=12 A22=7 A23=11
A31=-7 A32=-7 A33=-7
A*=![\left[\begin{array}{ccc}11&7&8\\13&7&11\\-7&-7&-7\end{array}\right]](/tpl/images/1693/8997/7ece8.png)
A*т=![\left[\begin{array}{ccc}11&13&-7\\7&7&-7\\5&11&-7\end{array}\right]](/tpl/images/1693/8997/3c1e2.png)
A-1= A*т/Δ=![\left[\begin{array}{ccc}11/14&13/14&-1/2\\1/2&1/2&-1/2\\5/14&11/14&-1/2\end{array}\right]](/tpl/images/1693/8997/f9624.png)
X=A-1*B
B=![\left[\begin{array}{c}-1\\10\\5\end{array}\right]](/tpl/images/1693/8997/d8879.png)
X=
*
=
=
=![\left[\begin{array}{c}6\\2\\5\end{array}\right]](/tpl/images/1693/8997/438b7.png)
Объяснение:1)Бросают игральный кубик Определите вероятность появления на верхней грани: а) числа 1; общее число исходов в задаче n=6. Решаем все по формуле: Р(А)=m/n, благоприятных исходов m, число всех исходов n.
Число 1 встречается только один раз на кубике - значит число благоприятных исходов 1
P=1/6≈0,16(6) - вероятность того,что выпадет 1 очко.
б)числа 2; Число 2 встречается только один раз на кубике - значит число благоприятных исходов 1
P=1/6≈0,16(6) - вероятность того,что выпадет число 2.
в) нечетного числа; общее число исходов в задаче n=6. Благоприятствуют событию только такие исходы, когда выпадет грань с 1, 3 или 5 очками (только ytчетные), таких граней m=3. Тогда искомая вероятность равна P=3/6=1/2=0.5.
г)числа 1 или 2; Если при бросании игрального кубика выпало 1 или 2, т.е. удовлетворяют 2 исхода, m=2. Нужная вероятность равна P=2/6=1/3=0.333.
д) числа 8; благоприятный исход отсутствует (числа 8 нет на кубике), значит m=0, поэтому Р=0/6 =0
е) числа 1 или 2 или 3 или 4 или 5 или 6 . Благоприятных исходов может быть 6, значит m=6, тогда P=6/6=1.
2)подбрасывают монету. Определите вероятность выпадения: а) орла / Общее количество исходов n=2, благопрятный исход m=1, тогда Р=1/2=0,5
б) решки / Общее количество исходов n=2, благопрятный исход m=1, тогда Р=1/2=0,5
в)Орла и решки / Благоприятных исходов может быть 2, значит m=2, тогда P=2/2=1/.
г)ни Орла ни решки /благоприятный исход отсутствует , значит m=0, поэтому Р=0/2 =0
3)Из ящика Где находится 4 черных и 5 белых шаров вынимают Один шар .Какова вероятность того что вынут:
а) черный шар / m=4+5=9, n=4, Р=4/9
б) белый шар / m=4+5=9, n=5, Р=5/9
4) из 28 костей Домино выбирают наугад одну кость. Какова вероятность выбрать с суммы очков:
а) 0
б) 4
в)7
г) 13
5)Бросают два игральных кубика .Какова вероятность выпадения суммы чисел равной: Всего таких пар чисел будет n=6⋅6=36
а) 3 / Число 3 может выпасть 2 раза, значит Р=2/36=1/18
б) 9 / Число 9 может выпасть 4 раза, значит Р=4/36=1/9
в) 12 / Число 12 может выпасть 1 раз, значит Р=1/36
г)14 / Число 14 не может выпасть, m=0, значит Р=0/36=0
6)выполняет тест по математике ученик не успевает в определённое время выполнить одно задание Какова вероятность того что ученик угадать правильный ответ если из 5 возможных ответов только один правильный и выбор каждого из ответов события равновозможные? Р=1/5=0,2
7) ученик задумал однозначное натуральное число другой ученик пытается его отгадать. Какова вероятность угадать число с первой попытки? / Всего однозначных натуральных чисел 9 (1, 2, 3, ..,9), значит Р=1/9