2222 - 111 - 99 + 5 = 2017.
Посмотрим, чему может равняться число . Так как выражение "- EEE - AA + R" больше или равно - 1086 (= - 999 - 88 + 1), то должно быть довольно близко к 2017. 3333 и 1111 не подходят, значит = 2222.
Теперь обратим внимание на число EEE. Пусть оно равно 222 или больше. Тогда у нас получится 2222 - 222 = 2000 или меньше. Теперь от этого числа нужно отнять некоторое двузначное и прибавить однозначное, то есть еще уменьшить число. Но так невозможно будет получить 2017. Значит, EEE = 111.
Мы имеем: 2222 - 111 = 2111. Если мы отнимем 94, то получим ровно 2017, но тогда R = 0 (ненатуральное). Тогда мы можем подставить A = 95, 96, 97, 98, 99 и получим соответственно R = 1, 2, 3, 4, 5. Но А должно состоять из одной цифры, так что A = 99, R = 5.
Примечание:
При решении ребуса мы учитывали то, что все числа являются натуральными, и не повторяются (то есть Y не может быть равно R и т. д.).
task/29760192 cos(3x/2)*cos(x/2) -1 > (1/2) * (1 -√3) *cosx
Решение : cos(3x/2)*cos(x/2) -1 > (1/2) * (1 -√3) *cosx ||*2||
2cos(3x/2)*cos(x/2) -2 > (1 -√3) *cosx ;
cos2x+cosx - (1 -√3) *cosx - 2 > 0 ;
2cos²x -1 +cosx - cosx +(√3) *cosx - 2 > 0 ;
2cos²x +(√3) *cosx -3 >0 ⇔ ( cosx +√3 )(2cosx -√3 ) >0 ||cosx +√3 >0 ||⇔ cosx > (√3) /2 ⇒ 2πn - π / 6 < x < π / 6 + 2πn , n ∈ ℤ (объединение интервалов )
ответ : x ∈ ( - π / 6 + 2πn ; π / 6 + 2πn ) , n ∈ ℤ.
P.S. 2cos²x +(√3) *cosx -3 = 0. D=(√3)²+4*2*(-3) =27 =(3√3)² ⇒√D =3√3)
cosx₁ = - √3 < - 1 → посторонний корень ; cosx₂ =(√3) / 2. * * *
B2=b1q; b4=b1q^3; b6=b1q^5; тогда система: b1q=3 и b1q^3+b1q^5=60
из второго выносим b1q, получается: b1q(q^2+q^4)=60; заменяем b1q на 3, получается: 3(q^2+q^4)=60; q^2+q^4=20.
Пусть t=q^2, t>=0 тогда t+t^2=20, решаем квадратное уравнение, t=4, значит q=2 или q=-2
ответ: 2; -2