Ну начнем с самого неприятного и сложного: cos^2(3a/2-pi/8) тут применим понижение степени: (1+cos(3a-pi/4))/2 далее проделаем такую хитрость: cos(3a-pi/4)=cos(3*a -3*pi/4-pi/4 +3pi/4)=cos(3(a-pi/4)+pi/2)=-sin(3(a-pi/4)=sin(3*(pi/4-a))=3*sin(pi/4-a)- 4*sin^3(pi/4-a)=3*1/3 -4*1/27=1-4/27=23/27 (1+cos(3a-pi/4))/2=(1+23/27)/2=25/27 Теперь вспомним что: √2 * sin(pi/4-a)=(cos(a)-sin(a))=√2/3 (вытекает из формулы синуса разности. И тут довольно элегантно находиться : (cosa-sina)^2=cos^2+sin^2a-sin2a. sin2a=1-(cosa-sina)^2=1-2/9=7/9 cos4a=1-2sin^2(2a)=1-98/81=-17/81. Осталось посчитать: 6*(7/9-17/81)-8*(25/27)=6*(46/81)-8*(75/81)=(6*46-8*75)/81=-324/81=-4 ответ: -4. Но мне почему то кажется, что я сделал не самым простым
2) 3√20 + 5√45 - 2√80 = 3√(4*5) + 5√(9*5) - 2√(16*5) =
= 6√5 + 15√5 - 8√5 = 13√5
3) √176² - (112)²/98 = √(16*11)² - (16*7)²/(49*2) = 16*11 - (16² * 7²)/(7² * 2) =
= 2⁴ *11 - 2⁷ = 2⁴(11 - 2³) = 16*3 = 48
6) √81a + √9a - √49a = 9√a + 3√a - 7√a = 5√a
9) 1/(5+2√6) + 1/(5-2√6) = ((5-2√6)+(5+2√6)) / (5-2√6)*(5+2√6) =
= 10/(5² - (2√6)²) = 10/(25-24) = 10