3x(x+4) ≤0 (x-2) решим методом интервалов значения х обращающие числитель и знаменатель в 0 это х={-4, 0, 2} рассмотрим знак выражения при х принадлежащих интервалам 1) при х∈(-∞,-4) возьмем какое-либо значение из этого интервала например -5 и вычислим значение выражения 3(-5)(-5+4)/(-5-2)=-15/7<0 знак - 2) при х∈(-4, 0) например х=-2 , 3(-2)(-2+4)/(-2-2)=12/2>0 знак + 3) при х∈(0,2) например х=1 , 3*5/(1-2)=-15<0 знак - 4) при х∈(2,+∞) например х=3 3*3(3+7)/(3-2)>0 знак + выберем те интервалы у которых знак - значения которые обращают числитель в 0 включим, которые обращают знаменатель в 0 исключим х∈ (-∞;-4]U[0;2)
Уравнение касательной имеет вид : у -у₁ =y '(x₁)*(x -x₁) , где T(x₁ ; у₁) ∈ Графику функции у =Ln2x. иначе у =y '(x₁)*(x -x₁)+ у₁⇔ у =y '(x₁)*(x -x₁)+ Ln2x₁ . y '(x₁) = tqα = k. y'(x) =(Ln2x) ' = (1/2x)*(2x) ' =1/x⇒ y '(x₁) =1/x₁ и у = (1/x₁)*x + Ln2x₁ -1. Но с другой стороны эта касательная проходит через начало координат , значит y = kx . Сравнивая получаем : Ln2x₁ -1=0 и k=1/x₁. Ln2x₁ -1=0 ⇔Ln2x₁=1⇔Ln2x₁=Lne ⇔ 2x₁=e⇒ x₁ =e/2. * * *T(e/2 ;1) * * *. k=1/x₁ =1/(e/2) =2/e.
≤0
(x-2)
решим методом интервалов
значения х обращающие числитель и знаменатель в 0
это х={-4, 0, 2}
рассмотрим знак выражения при х принадлежащих интервалам
1) при х∈(-∞,-4) возьмем какое-либо значение из этого интервала например -5 и вычислим значение выражения 3(-5)(-5+4)/(-5-2)=-15/7<0 знак -
2) при х∈(-4, 0) например х=-2 , 3(-2)(-2+4)/(-2-2)=12/2>0 знак +
3) при х∈(0,2) например х=1 , 3*5/(1-2)=-15<0 знак -
4) при х∈(2,+∞) например х=3 3*3(3+7)/(3-2)>0 знак +
выберем те интервалы у которых знак - значения которые обращают числитель в 0 включим, которые обращают знаменатель в 0 исключим
х∈ (-∞;-4]U[0;2)