Мы знаем, что tg(a) - целое. Если tg(3a) тоже целое, то 3-tg^2(a) делится нацело на 1-3tg^2(a).
Ясно, что при tg a = 0 будет tg 3a = 0 Далее, например, при tg(a) = 1 получаем tg(3a) = 1*(3 - 1)/(1 - 3)= 1*2/(-2) = -1 А при tg(a) = -1 получаем tg(3a) = -1*(3 - 1)/(1 - 3) = (-1)*2/(-2) = 1 Но уже при tg(a) = 2 мы получаем tg(3a) = 2*(3 - 4)/(1 - 3*4) = 2*(-1)/(-11) = 2/11 Соответственно, при tg(a) = -2 мы получим tg(3a) = -2/11. Это уже нецелые значения, и ни при каких других а целых не будет. ответ: (0; 0); (1; -1); (-1; 1)
Решение Графиком функции является парабола, ветви которой направлены вверх. 1) D (f) =R , т.к. f – многочлен. 2) f(-х) = (-х)2 - 4(-х) - 5 = х2 + 4х – 5 Функция поменяла знак частично, значит, f не является ни чётной, ни нечётной. 3) Нули функции: При х = 0 у = - 5; (0;-5) при у = 0 х2 - 4х – 5 = 0 По теореме, обратной теореме Виета х1 = -1; х2 = 5 (-1;0); (5;0). 4) Найдём производную функции f: f ′(х) = 2х – 4 Найдём критические точки: f ′(х) = 0; 2х – 4 = 0; х = 2 – критическая точка f ′(х) - + f (х) 2 х min 5) Найдём промежутки монотонности: Если функция возрастает, то f ′(х) > 0 ; 2х – 4 > 0; х > 2. Значит, на промежутке (2; ∞) функция возрастает. Если функция убывает, то f ′(х) < 0; 2х – 4 < 0; х < 2. Значит, на промежутке (- ∞; 2) функция убывает. 6) Найдём координаты вершины параболы: Х =Y = 22 - 4*2 – 5 = -9 (2;-9) – координаты вершины параболы. 7) Область изменения функции Е (у) = (-9; ∞) 8) Построим график функции: у -1 2 5 -5 х
Получили
Мы знаем, что tg(a) - целое. Если tg(3a) тоже целое, то
3-tg^2(a) делится нацело на 1-3tg^2(a).
Ясно, что при tg a = 0 будет tg 3a = 0
Далее, например, при tg(a) = 1 получаем
tg(3a) = 1*(3 - 1)/(1 - 3)= 1*2/(-2) = -1
А при tg(a) = -1 получаем
tg(3a) = -1*(3 - 1)/(1 - 3) = (-1)*2/(-2) = 1
Но уже при tg(a) = 2 мы получаем
tg(3a) = 2*(3 - 4)/(1 - 3*4) = 2*(-1)/(-11) = 2/11
Соответственно, при tg(a) = -2 мы получим tg(3a) = -2/11.
Это уже нецелые значения, и ни при каких других а целых не будет.
ответ: (0; 0); (1; -1); (-1; 1)