1. Натуральные 100; 21; 10 (натуральные - это числа, которые возникают при счете предметов.)
Целые 100; 21; 0 ; 10; - 15; -24; (целые - это натуральные, им противоположные и нуль.)
Рациональные -3,2 ; 100; - 14,5; 21; 0; 10; - 15; 1,2333 ...=1.2(3) ; -2,121121112 т.к. можем представить в виде р/q, где р- целое, q- натуральное.
Иррациональные 5, 1313111...; 0,1010010001...; (т.к. иррациональные числа - это числа, которые в десятичной записи представляют собой бесконечные непериодические десятичные дроби).
2.а) каждое натуральное число является целым - да.
б) каждое число является натуральным. - нет.
в) каждое число является рациональным - нет.
г) каждое рациональное число является действительным - да.
д) каждое действительное число является рациональным - нет.
е) каждое иррациональное число является действительным - да.
ж) каждое действительное число является иррациональным - нет.
Задание 3.
Сравните числа. а) 7,653>7,563
б) 1,(56) > 1,56
в) - 4,(45) < -4,45
г) 1,(34) <1,345
Задание 4:
Число 7,15 г) рациональное, т.к. 7,15=715/100
Число - 35. б) целое
Объяснение:
1/(a+b)-1/(b-a)-2b/(a^2-b)
Приводим выражение к общему знаменателю, общим знаменателем является выражение (a+b)*(b-a)*(a^2-b):
Дополнительный множитель для первой дроби: (a^2-b)*(b-a)
Дополнительный множитель для второй дроби: (a+b)*(a^2-b)
Дополнительный множитель для третьей дроби: (a+b)*(b-a)
В итоге:
((a^2-b)*(b-a)-(a+b)*(a^2-b)-(a+b)*(b-a))/((a+b)*(b-a)*(a^2-b))=(a^2b-a^3-b^2+ab-(a^3-ab+a^2b-b^2)-(ab-a^2+b^2-ab))/((a+b)*(b-a)*(a^2-b))=(a^2b-a^3-b^2+ab-a^3+ab-a^2b+b^2+a^2-b^2)/((a+b)*(b-a)*(a^2-b))=(-a^3+ab-a^3+ab+a^2-b^2)/((a+b)*(b-a)*(a^2-b))=(-2a^3+2ab+a^2-b^2)/((a+b)*(b-a)*(a^2-b))=-2a(a^2+b)+(a-b)*(a+b)/((a+b)*(b-a)*(a^2-b))
Объяснение:
Решение смотрите в приложении