Итак, представим числа 33 и 77 в виде суммы десятков и единиц: 33=30+3, 77=70+7. Мы видим, что 33^33+77^77=(30+3)^33+(70+7)^77=30^33+3^33+70^77+7^77... Т.к. 30 и 70 в любой целой положительной степени делятся на 5, акцентировать внимание мы будем лишь на степенные 3 и 7. Считать степень слишком долго, да и числа неудобные получатся, поэтому прибегнем к хитрости... Будем возводить каждое число на 1 степень и смотреть как изменяется последняя цифра. Сначала число 3... 3^1=3 3^2=9 3^3=27 3^4=81 3^5=243... Мы замечаем, что последняя цифра у 3^1 и 3^5 совпадает. Следовательно, это закономерность: последние цифры в степенях тройки будут 3, 9, 7, 1, а дальше они повторяются. Т.е. каждые 4 степени повторяются степени. Делим степень (33) на число разных последних цифр (4) и получаем 8, остаток 1. Обращаем внимание на остаток, ведь 8 - это число повторений... Т.к. остаток - 1, смотрим на первую цифру в нашей закономерности... Это 3. Позже сложим её с цифрой от 7.. Таким же образом находим закономерность последних цифр у степеней семёрки: 7, 9, 3, 1. 77:4= 19(ост.1). Следовательно, первая цифра. Это 7. Теперь складываем 7 и 3 и делим их на 5. (7+3)/5=10/5=2(ост.0). Делаем вывод, что сумма 33^33 и 77^77 при делении на 5 дает остаток 0.
|x-1|>|x+2|-3 |x-1|-|x+2|>-3 Раскроем модули. Приравняем каждое подмодульное выражение к нулю и найдем точки,в которых подмодульные выражения меняют знак: x-1=0 x+2=0 x=1 x=-2 Нанесем эти значения Х на числовую прямую:
(-2)(1)
Мы получили три промежутка.Найдем знаки каждого подмодульного выражения на каждом промежутке:
(-2)(1) x-1 - - + x+2 - + +
Раскроем модули на каждом промежутке: 1)x<-2 На этом промежутке оба подмодульных выражения отрицательны,поэтому раскрываем модули с противоположным знаком: -x+1+x+2>-3 3>-3 - неравенство верное при любых Х на промежутке x<-2
2) -2<=x<1 На этом промежутке первое подмодульное выражение отрицательное(его мы раскроем с противоположным знаком),а второе - положительное, и его мы раскроем с тем же знаком: -x+1-x-2>-3 -2x-1>-3 -2x>1-3 -2x>-2 x<1 С учетом промежутка -2<=x<1 получаем x e [-2;1)
3)x>=1 На этом промежутке оба подмодульных выражения положительные, поэтому раскрываем их без смены знака: x-1-x-2>-3 -3>-3 Неравенство не имеет решений на этом промежутке Соединим решения 1 и 2 промежутков и получим такой ответ: x e(-беск.,1)
33=30+3, 77=70+7.
Мы видим, что 33^33+77^77=(30+3)^33+(70+7)^77=30^33+3^33+70^77+7^77...
Т.к. 30 и 70 в любой целой положительной степени делятся на 5, акцентировать внимание мы будем лишь на степенные 3 и 7.
Считать степень слишком долго, да и числа неудобные получатся, поэтому прибегнем к хитрости...
Будем возводить каждое число на 1 степень и смотреть как изменяется последняя цифра. Сначала число 3...
3^1=3
3^2=9
3^3=27
3^4=81
3^5=243...
Мы замечаем, что последняя цифра у 3^1 и 3^5 совпадает. Следовательно, это закономерность: последние цифры в степенях тройки будут 3, 9, 7, 1, а дальше они повторяются. Т.е. каждые 4 степени повторяются степени. Делим степень (33) на число разных последних цифр (4) и получаем 8, остаток 1. Обращаем внимание на остаток, ведь 8 - это число повторений... Т.к. остаток - 1, смотрим на первую цифру в нашей закономерности... Это 3. Позже сложим её с цифрой от 7.. Таким же образом находим закономерность последних цифр у степеней семёрки: 7, 9, 3, 1.
77:4= 19(ост.1). Следовательно, первая цифра. Это 7. Теперь складываем 7 и 3 и делим их на 5.
(7+3)/5=10/5=2(ост.0). Делаем вывод, что сумма 33^33 и 77^77 при делении на 5 дает остаток 0.