М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Strummer
Strummer
16.01.2021 12:41 •  Алгебра

1.Сколько целых решений неравенства 2с < -1,3 принадлежит промежутку (-6; 3]

a)3
b)4
c)5
d)6

4.Какое из приведенных ниже неравенств является верным при любых значениях х и у, удовлетворяющих условию х > у?
a)у – х > 0
b)у – х < -1
c)х – у > 3
d)х – у > -2

5. При каких значениях х значение выражения 6х – 7 больше значения выражения 7х + 8?
a)х < -1
b)х > -1
c)х > -15
d)х < -15

👇
Открыть все ответы
Ответ:
xovancku
xovancku
16.01.2021
1) Раскрыть скобки:
x^4-10x^3+35x^2-50x+24=0
2) Рассмотреть все числа на которые может делиться число 24.
Это: 1,2,3,4,6,8,12,24
После проверки каждого числа подходит только 1.
1^4−10×1^3+35×1^2−50×1+24=0
60-60=0
3) Далее необходимо поделить уравнение x^4-10x^3+35x^2-50x+24=0 на (x-1)
=> (x^3−9x^2+26x−24)(x−1)=0
4) Повторяем шаги 2 и 3 относительно этого уравнения: x^3−9x^2+26x−24=0
В данном случае ответ будет (х-2)
5)В итоге имеем (x^2−7x+12)(x−2)(x−1)=0
6) Дальше я уже думаю Вы сами знаете как решать.
7) ответ: (x−4)(x−3)(x−2)(x−1)=0
х=1,2,3,4.
4,6(19 оценок)
Ответ:
каккураит
каккураит
16.01.2021
Так как члены представляют собой арифметическую прогрессию, то a2=a1+d, a5=a1+4d, где d - знаменатель арифметической прогрессии. Но так как эти же члены являются членами геометрической прогрессии, то a2=a1*q и a5=a1*q², где q - знаменатель геометрической прогрессии. По условию, a2+1=a1+1+d1, a5-3=a1+1+2d1, или a2=a1+d1, a5=a1+4+2d1. Из первого уравнения находим d1=d. Так как a5=a1+4d, то из второго уравнения следует уравнение 4d=4+2d, откуда d=2. Теперь, заменяя a2 на a1+2 и a5 на a1+8, получаем уравнения a1+2=a1*q, a1+8=a1*q². Из первого уравнения следует a1=2/(q-1). Подставляя это выражение во второе уравнение, приходим к квадратному уравнению q²-4q+3=0. Дискриминант D=(-4)²-4*1*3=4=2². Отсюда q=(4+2)/2=3 либо q=(4-2)/2=1. Но если q=1, то все члены геометрической прогрессии, а с ней и все члены исходной арифметической прогрессии, были бы равны, что было бы возможно лишь при d=0. Но так как d=2≠0, то q≠1. Значит, q=3. Тогда a1=2/(3-1)=1, и искомая сумма S100=100*(a1+a100)/2=50*(a1+a100). Но a100=a1+99d=1+99*2=199, и тогда S100=50*(1+199)=10 000. ответ: 10 000.  
4,5(42 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ