1) точки пересечения x^3=x x^3-x=0 x(x^2-1)=0 x=0 x^2=1 x=-1 x=1 так как эти точки принадлежат прямой у=х то в них у=х то есть (-1,1) (0,0) (1,1) 2) рассмотрим интервалы x<-1 -1<x<0 0<x<1 x>1 если х будет > х^3 значит прямая будет выше 2.1) x<-1 возьмем х из этого интервала например х=-2 x^3=-8 x>x^3 значит на этом интервале прямая выше 2.2) -1<x<0 например х=-0,5 x^3=-0,125 x<x^3 прямая ниже 2.3) 0<x<1 например х=0,5 x^3=0,125 x>x^3 прямая выше 2.4) x>1 например х=2 x^3=8 x<x^3 прямая выше таким образом прямая выше при x<-1 и при 0<x<1
3)Исследование на четность-нечетность: Функция нечетная.
4)Точек разрыва нет.
5)Нахождения уравнений асимптот: y=kx+b; k= Не существует. b= так как k не удовлетворяет, то и kx тоже. Не существует.
Асимптот нет.
6)Исследование на монотонность функции и экстремумы: x=0 - критическая точка. При x<0, f`(x)>0; ⇒ f(x) возрастает; При x>0 f`(x)>0; ⇒ f(x) возрастает; Так как знак при переходе через критическую точку не меняется, она не является точкой экстремума. Монотонно возрастает.
7)Исследование на выпуклость-вогнутость: x=0 - точка перегиба. При x<0, f(x)<0; ⇒ Выпуклая. При x>0, f(x)>0; ⇒ Вогнутая.
Відповідь:В
Пояснення: