24 числа можно составить.
Из них на 2 делятся 4
На 4 делятся 2
на 11 делятся 4
Объяснение:
у нас есть 4-значное число. на 1 позицию мы можем поставить 4 числа, на 2-3, на 3-2, на 4-1. Перемножая все варианты получаем 24. Значит всего можно составить 24 числа. Из них на 2 деляться только те у кого а конце 2 или 4 то есть. то есть на 1 позицию можно поставить 2 числа (9 или 7) на вторую 1 число, на последние две тоже по 2 числа, получается 4 числа.
Аналогично для деления на 4 только на последние две позиции можно поставить обязательно 24, получаеся только 2 числа.
И для 11 есть 4 разных числа, где сумма на нечетных позициях = сумме на четных, то есть 4+7 и 2+9
а) 4x² - 4x - 15 < 0
D = b² - 4ac = 16 + 4*4*15 = 16 + 240 = 256
x₁ = (-b + √D) / 2a = (4 + 16) / 8 = 20 / 8 = 2,5
x₂ = (-b - √D) / 2a = (4 - 16) / 8 = -12 / 8 = -1,5
(x - 2,5)(х + 1,5) < 0
{ x < 2,5
{ x < -1,5
ответ: (-1,5; 2,5)
б) x² - 81 > 0
(x - 9)(x + 9) > 0
{ x > -9
{ x > 9
ответ: (-9; 9)
в) x² < 1,7х
x² - 1,7х < 0
х(x - 1,7) < 0
{ x < 0
{ x < 1,7
ответ: (0; 1,7)
г) x( x + 3) - 6 < 3 (x + 1)
x² + 3x - 6 - 3x - 3 < 0
x² - 9 < 0
(x - 3)(x + 3) < 0
{ x < -3
{ x < 3
ответ: (-3; 3)