В знаменателе минусы уничтожаются (минус на минус дает плюс). 3x^2 - x + 3 ≠ 0 D = (-1)^2 - 4*3*3 = 1 - 36 < 0 - корней нет. 3x^2 - x + 3 > 0 при любом x. (x - 2)^2 > 0 при любом x, кроме x = 2, где (x - 2)^2 = 0 Поэтому x = 2 - это решение. Делим на всё это, а также сокращаем (x - 1). Но нужно помнить, что x = 2 - решение, а x = 1 - не решение. Особые точки: x = -7 и x = 2/3 По методу интервалов берем любое число, например, 0 Неравенство выполнено, значит, интервал (-7; 2/3] подходит. Точка x = 1 в интервал не входит. ответ: x ∈ (-7; 2/3] U [2]
Всё очень просто, берем первое уравнение у=20х+4, рисуем маленькую табличку две на три клетки, левый столбец называем х, правый у, далее берем любое число, например 0, пишем его в столбце там где х, подставляем в уравнение, получается у=20*0+4=> у=4 , записываем результат, то есть у в таблицу, берем другое число, вместо х, например -1, подставляем в уравнение, получается у=20*(-1)+4=> у=16, записываем в таблицу, чему равен у, далее мы чертим систему координат, ось абсцисс и ось ординат, а далее, опираясь на таблицу, чертим функцию
В знаменателе минусы уничтожаются (минус на минус дает плюс).
3x^2 - x + 3 ≠ 0
D = (-1)^2 - 4*3*3 = 1 - 36 < 0 - корней нет.
3x^2 - x + 3 > 0 при любом x.
(x - 2)^2 > 0 при любом x, кроме x = 2, где (x - 2)^2 = 0
Поэтому x = 2 - это решение.
Делим на всё это, а также сокращаем (x - 1).
Но нужно помнить, что x = 2 - решение, а x = 1 - не решение.
Особые точки: x = -7 и x = 2/3
По методу интервалов берем любое число, например, 0
Неравенство выполнено, значит, интервал (-7; 2/3] подходит.
Точка x = 1 в интервал не входит.
ответ: x ∈ (-7; 2/3] U [2]