Отрезок AC называется перпендикуляром, проведённым из точки A прямой a , если прямые AC и a перпендикулярны.
пер3.jpg
Точка C называется основанием перпендикуляра.
От точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.
Perpendikuls.png Perpendikuls1.png
Докажем, что от точки A , не лежащей на прямой BC , можно провести перпендикуляр к этой прямой.
Допустим, что дан угол ∡ABC .
Отложим от луча BC угол, равный данному, и совместим эти углы накладыванием (представим, что сложим лист бумаги с равными углами по стороне BC ).
Сторона BA совместится со стороной BA1 .
При этом точка A наложится на некоторую точку A1 .
Следовательно, совмещается угол ∡ACB с ∡A1CB .
Но углы ∡ACB и ∡A1CB — смежные, значит, каждый из них прямой.
Прямая AA1 перпендикулярна прямой BC , а отрезок AC является перпендикуляром от точки A к прямой BC .
Если допустить, что через точку A можно провести ещё один перпендикуляр к прямой BC , то он бы находился на прямой, пересекающейся с AA1 . Но две к одной и той же прямой перпендикулярные прямые должны быть параллельны и не могут пересекаться.
Это противоречие, что означает: через данную точку к прямой можно провести только один перпендикуляр.
Медианы, биссектрисы и высоты треугольника
Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.
Поэтому для построения медианы необходимо выполнить следующие действия:
1. найти середину стороны;
2. соединить точку, являющуюся серединой стороны треугольника, с противолежащей вершиной отрезком — это и будет медиана.
Mediana.png
У треугольника три стороны, следовательно, можно построить три медианы.
Все медианы пересекаются в одной точке.
Mediana1.png
Биссектриса треугольника — это отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противоположной стороне.
Поэтому для построения биссектрисы необходимо выполнить следующие действия:
1. построить биссектрису какого-либо угла треугольника (биссектриса угла — это луч, выходящий из вершины угла и делящий его на две равные части);
2. найти точку пересечения биссектрисы угла треугольника с противоположной стороной;
3. соединить вершину треугольника с точкой пересечения на противоположной стороне отрезком — это и будет биссектриса треугольника.
Bisektrise.png
У треугольника три угла и три биссектрисы.
Все биссектрисы пересекаются в одной точке.
Bisektrise1.png
Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противоположную сторону.
Поэтому для построения высоты необходимо выполнить следующие действия:
1. провести прямую, содержащую одну из сторон треугольника (в случае, если проводится высота из вершины острого угла в тупоугольном треугольнике);
2. из вершины, лежащей напротив проведённой прямой, опустить перпендикуляр к ней (перпендикуляр — это отрезок, проведённый из точки к прямой, составляющей с ней угол 90° ) — это и будет высота.
Augstums.png
Так же как медианы и биссектрисы, треугольник имеет три высоты.
Высоты треугольника пересекаются в одной точке.
Augstums1.png
Но, как выше упомянуто, для некоторых видов треугольников построение высот и точки их пересечения отличаются.
Если треугольник с прямым углом, то стороны, образующие прямой угол, можно назвать высотами, так как они перпендикулярны одна к другой. Точкой пересечения высот является общая вершина перпендикулярных сторон.
Augstums2.png
Объяснение:
Данный калькулятор предназначен для построения графиков функций онлайн.
Графики функций – это множество всех точек, представляющих геометрический вид функции; при этом x – любая точка из области определения функции, а все y - точки, равные соответствующим значениям функции. Другими словами, график функции y=f(x) является множеством всех точек, абсциссы и ординаты которых соответствуют уравнению y=f(x).
Изобразить график функции абсолютно точно в большинстве случаев невозможно, так как точек бесконечно много, трудно найти все точки графика функции. В таких случаях можно построить приблизительный график функции. Чем больше точек берется в расчет, тем график более точный.
Объяснение:
Вот так и надо выводить.
Объяснение:
1)х²+4х-21<0
х²+4х-21=0, квадратное уравнение, ищем корни:
х₁,₂=(-4±√16+84)/2
х₁,₂=(-4±√100)/2
х₁,₂=(-4±10)/2
х₁ -7
х₂=3
Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -1 0 1 2 3 4 5
у -24 -21 -16 -9 0 11 24
Смотрим на график и полученные значения х₁ -7 и х₂=3.
Вывод: у<0 при х∈(-7, 3)
То есть, решение неравенства находится в области от -7 до 3.
2)х²-12х+35>0
х²-12х+35=0, квадратное уравнение, ищем корни:
х₁,₂=(12±√144-140)/2
х₁,₂=(12±√4)/2
х₁,₂=(12±2)/2
х₁=5
х₂=7
Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х 3 4 5 6 7 8 9
у 8 3 0 -1 0 3 8
Смотрим на график и полученные значения х₁=5 и х₂=7.
Вывод: у>0 при х∈(-∞, 5)∪(7, ∞)
Решение неравенства находится в области от - бесконечности до 5 и от 7 до + бесконечности.
3)-x²+4x+32>0
x²-4x-32=0, квадратное уравнение, ищем корни:
х₁,₂=(4±√16+128)/2
х₁,₂=(4±√144)/2
х₁,₂=(4±12)/2
х₁= -4
х₂=8
Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -3 -2 -1 0 1 2 5 7
у 11 20 27 32 35 36 27 11
Смотрим на график и полученные значения х₁= -4 и х₂=8.
Вывод: у>0 при х∈(-4, 8)
Решение неравенства находится в области от -4 до 8.
4)-х²+11х-10<=0
х²-11х+10=0, квадратное уравнение, ищем корни:
х₁,₂=(11±√121-40)/2
х₁,₂=(11±√81)/2
х₁,₂=(11±9)/2
х₁=1
х₂=10
Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х 0 1 2 3 4 6 8 10
у -10 0 8 14 18 20 14 0
Смотрим на график и полученные значения х₁= 1 и х₂=10.
Вывод: у<=0 при х∈(-∞, 1)∪(10, ∞)
Решение неравенства находится в области от - бесконечности до 1
и от 10 до + бесконечности.