Используя график функции, найдите множество значений пере- менной, при которых принимает неотрицательные значения функция: 1) у = х2 — 9; 2) у = 6 – 2x. (Это 2 разных задания, с графиком )
Функция — это . Из графика видно, что в первом примере принимает неотрицательные значения при принадлежащем промежуткам от -∞ до -3 (включительно) и от 3 до ∞, то есть . Во втором примере: .
Пусть скорость пешком v₁ = х км/ч, тогда скорость на велосипеде v₂ = х + 6 км/ч Время при движении пешком t₁ = 45 мин = 3/4 ч Время на велосипеде t₂ = 20 мин = 1/3 ч Расстояние до школы S = v₁t₁ = v₂t₂
Тогда: v₁t₁ = v₂t₂ x*3/4 = (x + 6)*1/3 3/4 x = 1/3 x + 2 9/12 x - 4/12 x = 2 5/12 x = 2 x = 2 * 12/5 x = 24/5 x = 4,8 (км/ч) - скорость пешком. х + 6 = 10,8 (км/ч) - скорость на велосипеде
Пусть х км/час - скорость мотоциклиста, у км/час -скорость велосипедиста. До встречи мотоциклист проехал 28х км, а велосипедист 28у км. После встречи оставшийся путь мотоциклист проехал за 28у/х минут, а велосипедист за 28х/у. Зная, что мотоциклист был в пути на 42 мин меньше составим уравнение: 28х/у-28у/х=42 Обозначим дробь х/у новой переменной: х/у=z Тогда уравнение примет вид: 28z-28/z=42 Приводим к общему знаменателю: 28z^2+42z-28=0 Решая квадратное уравнение получим корни: z1=-2 не подходит; z2=1/2. СЛедовательно, х/у=1/2. т.Е. скорость велосипедиста в 2 раза меньше скорости мотоциклиста. Отсюда имеем время движения велосипедиста из В в А равно 28+56=84минуты. ответ: 84
Объяснение:
Функция — это . Из графика видно, что в первом примере принимает неотрицательные значения при принадлежащем промежуткам от -∞ до -3 (включительно) и от 3 до ∞, то есть . Во втором примере: .