0<у<24, 12<х<24, где х=АВ=ВС, у=АС
Объяснение:
Поскольку треугольник равнобедренный, то две стороны у него равны АВ=ВС. Пусть длина стороны АВ=х, длина стороны АС=у. Тогда периметр треугольника Р=х+х+у или 2х+у=48. Учитывая условие существования треугольника (сумма длин двух любых сторон больше длины третьей стороны), мы также получаем два неравенства 2х>у и х+у>х. Отсюда мы получаем множество решений, где длина основания треугольника может быть больше 0, но меньше 24, а длина бедра от 12 до 24 (не включая граничные значения)
Но я думаю, что какое-то условие Вы нам не дописали. :)
вот))
Объяснение:
Решение.
1 этап. Обозначение некоторого неизвестного числа буквой.
Пусть x деталей в день должен был изготавливать цех по плану, (x + 6) деталей в день изготавливал цех ежедневно.
Тогда 24x деталей необходимо изготовить цеху всего.
2 этап. Составление уравнения (математической модели задачи).
Учти условие, что за 4 дня до срока заказ был выполнен, то есть все детали были изготовлены.
Тогда 20(x + 6) деталей, изготовленные цехом за 20 дней, приравняй к общему количеству деталей, равному 24x.
Составь уравнение (математическую модель данной задачи).
20(x + 6) = 24x
3 этап. Решение уравнения.
Реши уравнение.
20(x + 6) = 24x
20x + 120 = 24x
24x – 20x = 120
4x = 120
x = 120 : 4
x = 30 (д) – в день должен был изготавливать цех по плану.
4 этап. Запись ответа в соответствии с условием задачи.
Тогда
24 ∙ 30 = 720 (д) – всего должен был изготовить цех.
ответ: 720 деталей.
Объяснение:
1. Строим 2 перпендикулярные друг другу прямых, отмечаем на них единичные отрезки. Прямую перпендикулярную земле называем у, прямую параллельную земле называем х. Точка пересечения – 0
2. 1 четверть - ("+";"+")
2 четверть - ("-";"+")
3 четверть - ("-";"-")
4 четверть - ("+";"-")
3. На ох - (х;0)
На оу - (0;у)
4. Пусть даны две точки А(х₁;у₁) и В(х₂;у₂). Формула расстояния
АВ=√((х₂-х₁)²+(у₂-у₁)²)