1. - 1;
2. 1.
Объяснение:
1. (5^2)^6•(5^7 : 5^4) /(-125)^5 = 5^(2•6) • 5^(7-4)/(-5^3)^5 = 5^12 • 5^3/(-5^15) = 5^15/(-5^15) = -1.
(✓при возведении степени в степень основание оставляем прежним, показатели умножаем;
✓при умножении степеней с одинаковыми основаниями основание оставляем прежним, показатели складываем;
✓при делении степеней с одинаковыми основаниями основание оставляем прежним, показатели вычитаем.)
2. ((-3)^9•9^2•81^3)/(-27^10 : 3^5) = ((-3)^9•9^2•81^3)/(-27^10 : 3^5) = -(3^9•(3^2)^2•(3^4)^3)/- ((3^3)^10 : 3^5) = - (3^9•(3^2)^2•(3^4)^3)/- ((3^3)^10 : 3^5) = + (3^9•3^4•3^12)/(3^30 : 3^5) = 3^25/3^25 = 1.
х=10 у=0.4*10=4 В(10;4) через точки А и В ПРОВОДИМ ПРЯМУЮ,
здесь же проводим прямые у=0 - это ось х, и у= - 2
1) 0.4х>=0 это по графику нужно посмотреть для каких х прямая у=0.4х расположена выше графика у=х ответ: для х>=0
2) 0.4x<= -2 нужно посмотреть для каких значений х график функции у=0.4х расположен ниже графика функции у= -2
найдем точку пересечения 0,4х= -2 при х= -5
из точки пересечения прямых опускаем перпендикуляр на ось х это и будет точка с координатой х= -5 ответ: х<= -5
собираем в общий ответ: -5 >= x >= 0