Пусть мы имеем неравенство с двумя переменными одного из следующих видов:y > f(x); y ≥ f(x); y < f(x); y ≤ f(x).Для изображения множества решений такого неравенства на координатной плоскости поступают следующим образом:1. Строим график функции y = f(x), который разбивает плоскость на две области.2. Выбираем любую из полученных областей и рассматриваем в ней произвольную точку. Проверяем выполнимость исходного неравенства для этой точки. Если в результате проверки получается верное числовое неравенство, то заключаем, что исходное неравенство выполняется во всей области, которой принадлежит выбранная точка. Таким образом, множеством решений неравенства – область, которой принадлежит выбранная точка. Если в результате проверки получается неверное числовое неравенство, то множеством решений неравенства будет вторая область, которой выбранная точка не принадлежит.3. Если неравенство строгое, то границы области, то есть точки графика функции y = f(x), не включают в множество решений и границу изображают пунктиром. Если неравенство нестрогое, то границы области, то есть точки графика функции y = f(x), включают в множество решений данного неравенства и границу в таком случае изображают сплошной линией. ну вообще это основное, а там уже смотри по заданию как))
А) Складываем отношения углов: 1+2+3=6 Составляем пропорцию: 6=180град. (т.к. сумма углов треугольника = 180 град.) 1=Х град. (1 здесь мера угла 1) Отсюда, Х=180 : 6 = 30 (град), т.е. угол 1 = 30 град. ответ: угол 1 = 30 градусов
Б) Сумма внешних углов треугольника, взятых по одному при каждой вершине, равна 360 град. Т.к. углы 5 + 6 = 220 град., то 360 - 220 = 140 (град) - это градусная мера внешнего угла 4 при вершине А. Отсюда, угол 1 = 180 град. - угол 4 = 180 - 140 = 40 (град.) - градусная мера угла 1 (т.к. угол 4 и угол 1 - смежные). ответ: угол 1 = 40 градусов
ну вообще это основное, а там уже смотри по заданию как))