При озеленении двора по окружности длиной 50π м посадили цветы, и вдоль прямой, на расстоянии 30 м от центра круга, посадили зеленый газон. Как зеленый газон расположен по отношению к круглой цветочной клумбе
{a1+ a6=11 a2+a4=10 Выразим а2, а4 , а6 через первый член арифметической прогрессии и разность прогрессии (d) a2=a1+d a4=a1+3d a6=a1+5d и подставим в систему: {a1+a1+5d=11 a1+d+a1+3d=10 {2a1+5d=11 2a1+4d=10 Решим систему методом сложения. Умножим первое уравнение на (-1) и сложим со вторым: {-2a1-5d=-11 + 2a1+4d=10 -d=-1 d=1 2a1+4=10 a1=3 (подставили найденное значение d во второе уравнение системы и нашли первый член прогрессии.) По формуле суммы n-первых членов прогрессии найдём сумму первых шести членов этой прогрессии: S6=(2·3+5 )\2·6=33 (Sn=(2a1+d(n-1))\2·n) ответ:33
Объяснение:
Последовательность называется возрастающей, если для любого n∈N выполняется неравенство yn<yn+1.
Последовательность называется убывающей, если для любого n∈N выполняется неравенство yn>yn+1.
Выпишем n-й и n+1-й члены последовательности: yn=n213n, yn+1=(n+1)213n+1.
Чтобы сравнить эти члены, составим их разность и оценим её знак:
yn+1−yn=(n+1)213n+1−n213n=(n2+2n+1)−13n213n+1=2n+1−12n213n+1
Для натуральных значений n справедливы неравенства 2n≤6n2 и 1<6n2.
Сложив их, получим 1+2n<12n2, т.е. для любых натуральных значений n справедливо неравенство 2n+1−12n213n+1<0, значит, yn+1−yn<0.
Итак, для любых натуральных значений n выполняется неравенство yn+1<yn,
а это значит, что последовательность (yn) убывает.