М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
bulyginaap08na1
bulyginaap08na1
26.01.2020 02:56 •  Алгебра

((6x+8y)^2-36x^2-64y^2):16xy

👇
Открыть все ответы
Ответ:
Decabrina6666
Decabrina6666
26.01.2020

Замечаем, что перестановки происходят отдельно среди четных чисел и среди нечетных чисел.  Поэтому надо ответить на следующий вопрос: есть k предметов, расставленных в каком-то порядке слева-направо и соответствующим образом занумерованных; меняя местами за одну операцию два соседних предмета, нужно расставить их в том же порядке, но справа-налево. Говоря ученым языком, можно сказать, что сначала у нас не было ни одной инверсии (инверсия - это когда предмет с меньшим номером стоит правее предмета с большим номером), а надо сделать максимальное количество инверсий. Меняя местами соседей, мы каждый раз изменяем количество инверсий на 1. Конечно, нам невыгодно уменьшать количество инверсий, а выгодно - увеличивать. Но в каком порядке производить эту операцию - менять местами соседей - абсолютно непринципиально. Поступим, скажем, так. Поменяем сначала местами первый предмет и второй, затем первый и третий, первый и четвертый, и так далее, наконец, первый и последний. Всё. Первый предмет оказался на нужном месте и больше оттуда никуда сдвигаться не будет. Потребовалось нам для этого, естественно, (k-1) операция. Далее будем передвигать второй предмет до тех пор, пока он не поменяется местами с k-м предметом и  не окажется рядом с первым, но левее первого. На это потребуется (k-2) операции. И так далее. Всего мы насчитаем (k-1)+(k-2)+\ldots +2+1=\frac{(k-1)k}{2} операций.

Остается подвести итоги. Окончательный ответ зависит от того, каково n - четное оно или нечетное.

1-й случай: n - четное, n=2m. Это означает, что у нас m четных чисел и m нечетных чисел. Всего операций получится

\frac{(m-1)m}{2}+\frac{(m-1)m}{2}=(m-1)m=(\frac{n}{2}-1)\frac{n}{2}=\frac{(n-2)n}{4}

2-й случай. n - нечетное, n=2m+1. Это означает, что у нас m четных чисел и (m+1) нечетных чисел.Всего операций получится

\frac{(m-1)m}{2}+\frac{m(m+1)}{2}=m^2=\left(\frac{n-1}{2}\right)^2

Решим задачу для n=5, 6, 7, 23.

n=5 - нечетное; \left(\frac{5-1}{2}\right)^2=4

n=6 - четное; \frac{(6-2)\cdot 6}{4}=6

n=7 - нечетное; \left(\frac{7-1}{2}\right)^2=9

n=23 - нечетное; \left(\frac{23-1}{2}\right)^2=121  

4,6(69 оценок)
Ответ:
Lololox222
Lololox222
26.01.2020

Порассуждаем.

Площадь ромба - это половина произведения его диагоналей. Произведение диагоналей вдвое больше: 96*2 = 192.

Диагонали ромба разбивают его площадь на 4 равных прямоугольных треугольника. Возьмём один такой треугольник. Сторона ромба - гипотенуза такого треугольника (стороны ромба равны). Значит, произведение катетов (катеты - половины диагоналей, так как в ромбе точкой пересечения диагонали разбиваются пополам) этого треугольника в 4 раза меньше произведения диагоналей: 192:4 = 48.

По условию, одна диагональ (а значит, и один из катетов нашего треугольника) в 3 раза больше другой. Значит, половина меньшей диагонали равна √48:3 = 4 см, а половина большей - 4*3 = 12 см.

Итак, у нас есть прямоугольный треугольник с катетами 4 см и 12 см, нужно найти его гипотенузу (напомним себе, что искомая гипотенуза есть сторона ромба). Воспользуемся теоремой Пифагора: 4² + 12² = 160, гипотенуза равна квадратному корню из суммы квадратов катетов: √160 = 4√10.

Таким образом, сторона ромба равна 4√10. Ромб - параллелограмм с равными сторонами, следовательно, все стороны ромба равны друг другу и составляют длину в 4√10 см.

ответ: 4√10 см.

4,4(28 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ