Пусть abc - искомое число.
Найдем все возможные комбинации цифр a, b и c, такие, что S = a + b + c = 21.
Если одна из цифр числа меньше 2, то и S < 2 + 9 + 9 = 21, что не подходит по условию. Таким образом, все цифры числа должны быть больше 2.
Последовательно рассмотрев случаи для семи возможных значений a: a = 3,4,5,6,7,8,9, находим соответствующие им b и c.
С точностью до перестановки цифр, возможных "уникальных" комбинаций всего 7: (3,9,9), (4,8,9), (5,7,9), (5,8,8), (6,6,9), (6,7,8) и (7,7,7).
Комбинации, полученные перестановкой цифр в каждой из этих 7-и комбинаций, представляют различные между собой числа, и также нам подходят. Проделав всевозможные перестановки цифр в каждой тройке, мы найдем все различные n = 28 чисел.
Общее количество трехзначных чисел (т.е. чисел 100, 101, 102, 103, ..., 999), как легко подсчитать, будет N = 999 - 100 + 1 = 900. Откуда и получим искомую вероятность p = 28/900 = 7/225 = 0,03(1).
(РРР) (РРО) (РОР) (ОРР) (ООР) (ОРО) (РОО) (ООО)
Два раза орёл и один раз решка выпадает в трёх случаях (ООР) (ОРО) (РОО).
Вероятность равна 3/8.
1б) Если монету бросают дважды, то возможны случаи
(ОО) (ОР) (РО) (РР)
Вероятность ХОТЯ бы один раз выпасть орлу равна 3/4.
2) Двойка выпадает с вероятностью 1/6 и пятёрка выпадает с вероятностью 1/6 .
Вероятность того, что выпадет или 2 или 5 равна 1/6+1/6=2/6=1/3
б)Чисел, меньших 3, на кубике всего два.Чисел,не больших 3 (меньше или равно 3),на кубике всего 3.Вероятность события равна
2/6*3/6=6/36=1/6