М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
BeautifulGirl001
BeautifulGirl001
02.09.2021 09:29 •  Алгебра

Найдите сумму пяти членов геом. прогрессии: 16; 24; 36.​

👇
Открыть все ответы
Ответ:
Lolycat
Lolycat
02.09.2021
Совокупность всех первообразных F(x) + C функции f(x) на рассматриваемом промежутке называется неопределенным интегралом и обозначается ∫f(x)dx, где f(x) — подынтегральная функция, f(x)dx — подынтегральное выражение, х – переменная интегрирования.

Найти неопределенный интеграл:

1. ∫(x2 + x – 1)dx.

2014-10-28_094604

2. ∫ (sinx – 3cosx)dx.

A) cosx-3sinx+C; B) –cosx+3sinx+C; C) -cosx-3sinx+C; D) cosx+3sinx+C; E) -cosx-sinx.

2014-10-28_094830

A) tgx-ctgx+C; B) tgx+ctgx+C; C) ctgx-tgx+C; D) tg2x+ctg2x+C; E) tg2x-ctg2x+C.

5. ∫(4x – 3)5dx.

2014-10-28_095603

7. ∫sin(12x + 7)dx.

2014-10-28_100021

Формула Ньютона-Лейбница:

a11-1
4,5(70 оценок)
Ответ:
Kursova82
Kursova82
02.09.2021

Имеется в виду, что a, b, c - какие-то функции от x. Обычный сводящийся к рассмотрению нескольких случаев раскрытия модулей, хорош, если легко ищутся промежутки, на которых эти функции имеют определенный знак. Если же это не так, можно применить метод, который можно найти в книжке Голубева "Решение сложных и нестандартных задач по математике" (этот метод там не обосновывается, поскольку любой, берущийся за решение сложных и нестандартных задач, должен такое обоснование придумывать самостоятельно). Постараюсь это обоснование привести здесь. Основой метода служат следующие равносильности:

|a|     |a|b\Leftrightarrow \left [ {{ab} \atop {ab} \atop {-ab}} \right..

Доказывать здесь их не хотелось бы. Скажем, в книжке Мерзляка, Полонского и Якира  "Алгебраический тренажер" они используются без доказательства.  Если эти доказательства кому-то нужны, помещайте такое задание, и я обязательно их приведу. Кстати, для тех, кто забыл, напомню, что фигурной скобкой обозначается система, а квадратной - совокупность.

Переходим к неравенству |a|+|b| Перенеся |b| направо, получаем неравенство первого типа, поэтому оно равносильно системе

\left \{ {{a Снова применяем тот же метод, теперь к каждому из неравенств системы, после чего получаем после перенесения  a влево, систему из четырех неравенств, которую для экономии места и времени для написания я изображу в виде \{\pm a\pm b

Рассуждая аналогично, получаем, что

|a|+|b|c\Leftrightarrow [\pm a\pm bc. Естественно, здесь такое обозначение я использовал для совокупности четырех неравенств,  полученных всевозможными раскрытия модулей.

Наконец, если мы имеем модуль и в правой части, то в случае неравенства |a|+|b|<|c| мы получаем систему \{\pm a\pm b\pm a \pm b, причем каждое из этих неравенств равносильно совокупности двух уравнений, полученных разными раскрытиями модуля  c.

Аналогично решается неравенство |a|+|b|>|c|, только здесь получится не система четырех совокупностей, а совокупность четырех систем.

4,4(26 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ