М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Сложное123
Сложное123
29.11.2022 23:30 •  Алгебра

Найди первые пять членов последовательности (xn), заданной рекуррентно надо​

👇
Ответ:
vaynasmirnov021
vaynasmirnov021
29.11.2022

ответ: {-3; 1; 5; 9; 13}

Объяснение:

x_{1} =-3\\x_{n} =x_{n-1} +4\\x_{2} =-3+4=1\\x_{3} =1+4=5\\x_{4} =5+4=9\\x_{5} =9+4=13

4,4(89 оценок)
Открыть все ответы
Ответ:
golubfrog
golubfrog
29.11.2022
Интересная задачка.

Для того, чтобы начать решать эту задачу, нам необходимо найти такую последовательность, которая приносила бы нам всегда удачу! Из условия ясно, что начинающий должен ходить первый. Можно предложить такой вариант ходов: 
Начинающий должен взять один карандаш. Остается 17 штук. Какое бы количество карандашей ни взял противник, обязательно нужно оставить 13 карандашей на столе. По такому же раскладу, надо оставить 9 карандашей, а затем 5. Какое бы количество карандашей не взял соперник, начинающий всегда сможет оставить ему 1 карандаш.
4,7(88 оценок)
Ответ:
Luna669
Luna669
29.11.2022

Чтобы выполнить сложение или вычитание алгебраических дробей с одинаковыми знаменателями, надо найти сумму или разность числителей, а знаменатель оставить без изменений.

Пример 1. Выполните сложение алгебраических дробей:

а)   a + 3  +  a - 3         б)   2b - 1  +  b + 4

b b 2 2

Решение: складываем числители дробей и выполняем приведение подобных членов (если они есть):

а)   a + 3  +  a - 3  =  (a + 3) + (a - 3)  =  a + 3 + a - 3  =  2a

b b b b b

б)   2b - 1  +  b + 4  =  (2b - 1) + (b + 4)  =  2b - 1 + b + 4  =  3b + 3

2 2 2 2 2

Пример 2. Выполните вычитание алгебраических дробей:

а)   x + 5  -  5x         б)   a + b  -  a + 4

3 3 a - 5 a - 5

Решение: вычитаем из числителя первой дроби числитель второй дроби и выполняем приведение подобных членов (если они есть):

а)   x + 5  -  5x  =  x + 5 - 5x  =  5 - 4x

3 3 3 3

б)   a + b  -  a + 4  =  (a + b) - (a + 4)  =  a + b - a - 4  =  b - 4

a - 5 a - 5 a - 5 a - 5 a - 5

Сложение и вычитание алгебраических дробей с одинаковыми знаменателями в виде общих формул:

a  +  b   =   a + b      и      a  -  b   =   a - b           (c≠0)

c c c c c c

Если дроби имеют знаменатели, состоящие из противоположных выражений, то есть выражений, отличающихся только знаком, надо тождественно преобразовать одну из дробей, чтобы привести их к общему знаменателю. Преобразование выполняется в соответствии с правилами знаков:

a  =  -a

b -b

Данное преобразование можно рассматривать как умножение числителя и знаменателя дроби на -1. Следовательно, если числитель и знаменатель алгебраической дроби заменить на противоположные выражения, то получится дробь, равная данной. Полученную дробь можно переписать, поставив один из минусов перед дробью:

a  =  -a  = - a  = - -a

b -b -b b

Также, любую отрицательную дробь можно сделать положительной, перенеся минус, стоящий перед дробью, в числитель или знаменатель:

- a  =  -a  =  a

b b -b

Пример 1. Найдите сумму дробей:

5a  +  3a

b - c c - b

Решение: чтобы выполнить сложение, поменяем знаки перед второй дробью и в её знаменателе на противоположные:

5a  +  3a  =  5a  -  3a  =  5a  -  3a  =  2a

b - c c - b b - c -(c - b) b - c b - c b - c

Пример 2. Найдите разность дробей:

n + 5  -  2n

n2 - m m - n2

Решение: чтобы выполнить вычитание, перенесём знак минус, стоящий перед второй дробью, в её знаменатель:

n + 5  -  2n  =  n + 5  +  2n  =  n + 5  +  2n  =  3n + 5

n2 - m m - n2 n2 - m -(m - n2) n2 - m n2 - m n2 - m

Сложение и вычитание с разными знаменателями

Чтобы найти сумму или разность алгебраических дробей с разными знаменателями, надо:

найти общий знаменатель,

привести алгебраические дроби к общему знаменателю,

выполнить сложение или вычитание,

сократить полученную дробь, если это возможно.

Пример 1. Выполните сложение дробей:

2a  +  b

a + b a - b

Решение: находим общий знаменатель. Он будет равен произведению знаменателей данных дробей:

(a + b)(a - b)

Как находить общий знаменатель, Вы можете узнать на странице Приведение алгебраических дробей к общему знаменателю. Далее умножаем числитель каждой дроби на дополнительный множитель:

2a(a - b) = 2a2 - 2ab

b(a + b) = ab + b2

Общий знаменатель можно свернуть в разность квадратов. В итоге у нас получится:

2a  +  b  =  2a2 - 2ab  +  ab + b2  =  

a + b a - b a2 - b2 a2 - b2

=  2a2 - 2ab + ab + b2  =  2a2 - ab + b2

a2 - b2 a2 - b2

Пример 2. Выполните вычитание дробей:

b  -  2

a2 - ab a - b

Решение: разложим знаменатель первой дроби на множители:

a2 - ab = a(a - b)

Так как данное выражение делится на знаменатель второй дроби, то возьмём его в качестве общего знаменателя. Значит, теперь нам надо умножить числитель второй дроби на дополнительный множитель a:

2 · a = 2a

Получаем:

b  -  2  =  b  -  2a  =  b - 2a

a2 - ab a - b a(a - b) a(a - b) a(a - b)

Пример 3. Выполните сложение:

x +  x2

1 - x

Решение: запишем первое слагаемое в виде дроби и приведём её к знаменателю 1 - x:

x +  x2  =  x  +  x2  =  x(1 - x)  +  x2  =  x - x2  +  x2

1 - x 1 1 - x 1 - x 1 - x 1 - x 1 - x

Теперь можно выполнить сложение дробей с одинаковыми знаменателями:

x - x2  +  x2  =  x - x2 + x2  =  x

1 - x 1 - x 1 - x 1 - x

Точно также можно выполнять сложение и вычитание алгебраических дробей с любыми многочленами.

Объяснение:

4,7(70 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ