Пусть х (км/ч) - скорость течения, тогда (10+х) - скорость моторной лодки по течению, а (10-х) - скорость моторной лодки против течения. Составим уравнение.
39:(10+х)+28:(10-х)=7
39(10-х)+28(10+х)=7(10+х)(10-х)
390-39х+280+28х=7(100+10х-10х-х^2)
670-11х=700-х^2
7x^2-11х+670-700=0
7х^2-11х-30=0 -квадратное уравнение
Решаем квадратное уравнение.
D (Дискриминант уравнения) = b 2 - 4ac = 961
х1=(-b+√D)/2a=(11+31)/(2*7)=42/14=3
х2=(-b-√D)/2a=(11-31)/(2*7)=-20/14=-10/7
Скорость течения: 3 км/ч
Проверка:
39:(10+3)+28:(10-3)=7
39:13+28:7=7
3+4=7
7=7
ответ: скорость течения реки 3 км/ч
ответ:10 часов 15 минут
Ну для начала смотрим, что отец и сын встретились на расстоянии 12 км от Кальтухи, отец же выехал из Кальтухи, значит отец проехал 12 км
А сын проехал:1) 30,75км - 12км = 18,75 км
2)узнаем сколько часов ехал Эмиль для этого расстояние делим на скорость: 18,75 : 15км/ч = 1(ч) 15(м)
3)10ч + 1ч 15м= 11(ч) 15(м)- это во столько они встретились
4)Узнаем сколько по времени ехал отец: 12км : 12км/ч = 1(ч)
5)А теперь, на сколько позже выехал отец: 1ч 15 м - 1ч = 15м
6)10ч(во столько выехал Эмиль)+ 15 минут(на столько позже выехал отец)=10ч 15 м: в это время выехал отец из Кальтухи.
Вроде бы так) Удачи