ab - ac - 4b + 4c = a(b - c) - 4(b - c) = (b - c)(a - 4).
Как выполняется: ищем что-то одинаковое у нескольких слагаемых. Так, мы увидели одинаковый сомножитель a в слагаемых ab и -ac, одинаковый сомножитель 4 у слагаемых -4b и 4c. Вынесли их за скобку и заметили, что появились две одинаковые скобки: (b - c) – которые являются сомножителями для a(b - c), -4(b - c). Выносим за скобку его и получаем разложение.
То есть вам нужно найти что-то одинаковое у нескольких слагаемых и вынести это за скобку.
1) 102 градуса - это 2 четверть. sin a > 0, cos a < 0, tg a < 0, ctg a < 0 1501 градус = 360*4 + 61 - 1 четверть. sin a, cos a, tg a, ctg a > 0
2) sin a = -13/14, a ∈ 3 четверти. cos a < 0 cos a = -√(1 - 169/196) = -√(27/196) = -3√3/14 tg a = sin a / cos a = (-13/14) : (-3√3/14) = 13/(3√3) = 13√3/9 a) (sin^2 a + tg^2 a + cos^2 a)*cos^2 a + tg a*ctg a = = (1 + tg^2 a)*cos^2 a + 1 = 1/cos^2 a * cos^2 a + 1 = 1 + 1 = 2 b) Как это сократить, чтобы получить нормальный ответ, я не знаю. Думаю, что где-то ошибка. Или у меня, или в задании.
ab - ac - 4b + 4c = a(b - c) - 4(b - c) = (b - c)(a - 4).
Как выполняется: ищем что-то одинаковое у нескольких слагаемых. Так, мы увидели одинаковый сомножитель a в слагаемых ab и -ac, одинаковый сомножитель 4 у слагаемых -4b и 4c. Вынесли их за скобку и заметили, что появились две одинаковые скобки: (b - c) – которые являются сомножителями для a(b - c), -4(b - c). Выносим за скобку его и получаем разложение.
То есть вам нужно найти что-то одинаковое у нескольких слагаемых и вынести это за скобку.
ответ: (b - c)(a - 4).