Приведем верхнюю дробь к общему знаменателю (а + 3) * (а – 3):
((а + 3) / (а – 3) + (а - 3) / (а + 3)) / ((3а2 + 27) / (9 – а2)) = ((а + 3) * (а + 3) / (а – 3) * (а + 3) + (а - 3) * (а – 3) / (а + 3) * (а – 3)) / ((3а2 + 27) / (9 – а2)) = ((а + 3) * (а + 3) + (а - 3) * (а – 3)) / ((а + 3) * (а – 3)) / ((3а2 + 27) / (9 – а2)) = ((а + 3)2 + (а - 3)2) / ((а + 3) * (а – 3)) / (3 * (а2 + 9)) / (9 – а2)).
Раскроем скобки в числителе верхней дроби и используем формулу разности квадратов для ее знаменателя:
(2а2 + 18) / (а2 – 9) / (3 * (а2 + 9)) / (9 – а2)) = - 2 * (а2 + 9) / (9 - а2) * ((9 – а2) / (3 * (а2 + 9))) = - 2/3.
ОТВЕТ: -2/3.
Область определения - это допустимые значения Х -обозначается D(y)/.
а) прямая - Х любое или D(y) - Х∈(-∞; +∞)
б) квадратичная функция - Х∈R или Х∈(-∞; +∞) - Х любое.
в) Если У= 2х/( 5 - х), то все кроме Х = 5 - деление на 0 не допускается - значение Х=5 исключается.
Записывается D(y)- Х∈(-∞;5)∪ (5;+∞)
Внимание: Х=5 не может быть - обозначаем круглой скобкой.
г) Произведение двух чисел. Х = любое.
д) У = 1/х² +1 - Все кроме Х=0 - деление на 0.
Х ∈ (-∞;0)∪(0;+∞)
е) Квадратный корень не может быть из отрицательного числа. Х ≥0.
D(y) - X∈[0;+∞).
Внимание: значение Х=0 может быть - в записи квадратная скобка.
Объяснение:
3a-4b²+1,3b^[3]-6ab²-1
^[3] - это третья степень