М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
yaremhykv04
yaremhykv04
29.04.2021 16:12 •  Алгебра

Разложить на множитель 16-8b+b^2​

👇
Ответ:
daniktsarev
daniktsarev
29.04.2021

16-8b+b^2

4^2-8b+b^2

4^2-2*4*b+b^2

(4-b)^2

Объяснение:

4,6(80 оценок)
Ответ:
vitahoptaska343
vitahoptaska343
29.04.2021
Чтобы разложить выражение на множитель, мы должны найти два множителя, которые вместе равны исходному выражению и которые могут быть умножены, чтобы дать это выражение.

Для разложения 16-8b+b^2 на множители, мы должны найти два числа, сумма которых равна -8 и произведение которых равно 16.

Мы можем использовать метод разложения на множители или просто провести пробные вычисления.

1. Метод разложения на множители:

Для начала, расставим выражение в порядке возрастания степени b:
b^2 - 8b + 16

Мы знаем, что произведение двух множителей равно константе перед b^2 (1) и что их сумма равна коэффициенту при b (-8).

Теперь рассмотрим множители для каждого члена выражения:
b^2 может быть записано как (b)(b)

16 может быть записано следующим образом: (1)(16), (-1)(-16), (2)(8), (-2)(-8), (4)(4), (-4)(-4)

Теперь, рассмотрим различные комбинации этих множителей, чтобы получить сумму -8.

-4 + (-4) = -8.

Таким образом, мы можем записать исходное выражение в виде:
(b - 4)(b - 4), или более просто в виде (b - 4)^2.

2. Проверка через пробные вычисления:

Если метод разложения на множители кажется сложным, можно провести пробные вычисления, чтобы найти искомые множители.

Мы имеем выражение: 16-8b+b^2

Пробуем записать его в виде (b - x)(b - y).

Теперь умножим эти два множителя и раскроем скобки:

(b - x)(b - y) = b^2 - bx - by + xy.

Мы хотим, чтобы это выражение было равно исходному:

b^2 - bx - by + xy = 16 - 8b + b^2.

Теперь сравниваем коэффициенты соответствующих членов:

- bx - by = -8b
xy = 16.

Из первого уравнения можно сделать вывод, что x + y = 8. Из второго уравнения, что xy = 16.

Теперь рассмотрим различные комбинации множителей числа 16, чтобы найти два числа, сумма которых равна 8:

1, 16 (1 + 16 = 17)
2, 8 (2 + 8 = 10)
4, 4 (4 + 4 = 8)

Очевидно, что 4 и 4 являются искомыми множителями, потому что их сумма равна 8.

Таким образом, мы можем записать исходное выражение в виде:
(b - 4)(b - 4), или более просто в виде (b - 4)^2.

Таким образом, разложение исходного выражения на множитель равно (b - 4)^2.
4,4(99 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ