М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
КристиGirl
КристиGirl
17.04.2020 19:59 •  Алгебра

Вычислить интегралы (Нижнее 2 задание)

👇
Открыть все ответы
Ответ:
Brauberg898117
Brauberg898117
17.04.2020
Последовательные натуральные числа образуют арифметическую прогрессию.
Ее сумма:
Sn = n(a1 + an)/2,
где а1 - первый член прогрессии, аn - последний член.
По условию а1=1, а поскольку все следующие числа представляют собой последовательно идущие числа, то последний член прогрессии совпадает с его номером n. Сумма должна быть меньше 528.
Получается неравенство:
528 > n(1+n)/2
n(1+n) < 1056
n^2 + n - 1056 <0
Найдем корни:
Дискриминант:
Корень из (1+4•1056) =
= корень из (1+4224) =
= корень из 4225 = 65
n1 = (-1+65)/2 = 64/2 = 32
n2 = (-1-65)/2 = -66/2 = -33 не подходит, поскольку корень не является натуральным числом.

(n-32)(n+32) <0
n-32<0
n+32>0

n<32
n>-32 - не подходит, поскольку n >0

1 < n < 32
Это значит, что n= 31.

ответ: 31

Проверка:
Если бы n=32, то:
(1+32)•32/2 = 33•32/2 = 33•16 = 528, значит сумма последовательных чисел от 1 до 32 была бы равна 528.
4,7(51 оценок)
Ответ:
Dimaaaaaaasiiiiiik
Dimaaaaaaasiiiiiik
17.04.2020

6

Объяснение:

Ограничения:

\left\{\begin{matrix} x^2-4x+5\geq 0\\ x^2+4x+8\geq 0 \end{matrix}\right. \ \Rightarrow \ \left\{\begin{matrix} D

(4x-8)\sqrt{x^2-4x+5}-(x+2)\sqrt{x^2+4x+8}+x-6=0 \\ \\ 4(x-2)\sqrt{x^2-4x+5}-(x+2)\sqrt{x^2+4x+8}+x-6=0 \ |:4 \\ \\ (x-2)\sqrt{x^2-4x+5}-\frac{x+2}{2}\frac{\sqrt{x^2+4x+4+4}}{2}+\frac{x-6}{4}=0 \\ \\ (x-2)\sqrt{x^2-4x+4+1}-\frac{x+2}{2}\sqrt{\frac{(x+2)^2+4}{4}}+\frac{x-6}{4}=0 \\ \\ (x-2)\sqrt{(x-2)^2+1}-\frac{x+2}{2}\sqrt{\left(\frac{x+2}{2}\right)^2+1}+\frac{x-6}{4}=0

Замечаем, что первые два слагаемых имеют общую структуру в виде функции:

f(t)=t\sqrt{t^2+1}

Действительно, если вместо t подставить x-2, то

f(x-2)=(x-2)\sqrt{(x-2)^2+1}

Аналогично

f\left(\frac{x+2}{2}\right)= \frac{x+2}{2}\sqrt{\left(\frac{x+2}{2}\right)^2+1}

Тогда 3-е слагаемое нашего уравнения представим в виде разности двух линейных функций вида: g(t)=at

g(x-2)=a(x-2)\\ \\g\left(\frac{x+2}{2}\right)= \frac{a(x+2)}{2} \\ \\ g(x-2)-g\left(\frac{x+2}{2}\right)=\frac{x-6}{4} \\ \\ a(x-2)- \frac{a(x+2)}{2}=\frac{x-6}{4} \\ \\ ax-2a-\frac{ax+2a}{2} =\frac{x}{4} -\frac{6}{4} \\ \\ ax-2a-\frac{ax}{2}-a=\frac{x}{4} -\frac{3}{2} \\ \\ \frac{ax}{2} -3a=\frac{x}{4}-\frac{3}{2} \\ \\ a=\frac{1}{2}

Дополним g(t) к основной функции:

f(t)=t\sqrt{t^2+1}+\frac{1}{2}t

Исследуем ее на монотонность с производной

f'(t)=t'\sqrt{t^2+1}+t(\sqrt{t^2+1})'+\left(\frac{1}{2}t\right)'=\sqrt{t^2+1}+t*\frac{2t}{2\sqrt{t^2+1}} +\frac{1}{2} =\\ \\=\sqrt{t^2+1}+\frac{t^2}{\sqrt{t^2+1}} +\frac{1}{2}

Заметим, что t²≥0; √(t²+1)>0, при любых действительных t, тогда

\sqrt{t^2+1}+\frac{t^2}{\sqrt{t^2+1}} +\frac{1}{2}0

Значит f'(t)>0, следовательно f(t) - монотонно возрастающая функция на всей числовой оси

Для монотонных функций справедливо:

f(a)=f(b) ⇔ a=b

Перепишем наше уравнение в следующем виде

(x-2)\sqrt{(x-2)^2+1}-\frac{x+2}{2}\sqrt{\left(\frac{x+2}{2}\right)^2+1}+\frac{x-6}{4}=0 \\ \\ (x-2)\sqrt{(x-2)^2+1}+\frac{1}{2}(x-2)=\frac{x+2}{2}\sqrt{\left(\frac{x+2}{2}\right)^2+1}+\frac{1}{2}* \frac{x+2}{2} \\ \\ f(x-2)=f\left(\frac{x+2}{2}\right) \\ \\ x-2=\frac{x+2}{2} \ |*2 \\ \\ 2x-4=x+2 \\ \\ x=6

4,5(99 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ