Ne1 Pешить систему y = 10x+72 7x+y=-47 Ne2 Решить систему -7x+y = -69 8х-6у= 74 Ne3 Pешить систему -4x+9y = - 75 Зx-9y= 72 Ne4 Pешить систему 10x+8y=54 -10x-7y = -46 No5 Решить систему y = x+1 z = -2x-1 4х РЕШИТЕ НА ЛИСТОЧКЕ
Иногда называют тождеством также равенство, не содержащее никаких переменных; напр. {\displaystyle 25^{2}=625.}
Не любое равенство является тождеством. Например, равенство {\displaystyle x+2=5} имеет место не при всяком значении {\displaystyle x}, а только при {\displaystyle x=3}. Поэтому оно не является тождеством. Кроме того, равенство может выполняться, например, при положительных значениях переменных и не выполняться (или не иметь смысла) при отрицательных, см. об этом следующий раздел.
Тождественное равенство, когда его хотят подчеркнуть особо, обозначается вместо знака равенства символом «≡».
Линейная функция имеет формулу: y = kx + b прямая пропорциональность имеет формулу: y = kx т.к. по условию их графики параллельны, то их коэффициенты (k) равны.
уравнение прямой, проходящей через две точки, имеет вид: (x - x1) / (x2 - x1) = (y - y1) / (y2 - y1), где x1, x2, y1, y2 - координаты в данном случае x1 = 0, y1 = 2, x2 = 6, y2 = 0 тогда (x - 0) / (6 - 0) = (y - 2) / (0 - 2) x / 6 = (y - 2) / -2 | умножаем на 6 x = -3(y - 2) x = -3y + 6 6 - 3y = x 3y = 6 - x y = (6 - x) / 3 y = 2 - x/3 - линейная функция, её коэффициент k = -1/3
т.к. коэффициенты равны, то прямая пропорциональность имеет формула y = -x/3
Иногда называют тождеством также равенство, не содержащее никаких переменных; напр. {\displaystyle 25^{2}=625.}
Не любое равенство является тождеством. Например, равенство {\displaystyle x+2=5} имеет место не при всяком значении {\displaystyle x}, а только при {\displaystyle x=3}. Поэтому оно не является тождеством. Кроме того, равенство может выполняться, например, при положительных значениях переменных и не выполняться (или не иметь смысла) при отрицательных, см. об этом следующий раздел.
Тождественное равенство, когда его хотят подчеркнуть особо, обозначается вместо знака равенства символом «≡».