М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
maremboga8
maremboga8
05.01.2021 02:41 •  Алгебра

Решите графически систему уравнений
x+y=-1
3x+3y=-2

👇
Открыть все ответы
Ответ:
waleruwka
waleruwka
05.01.2021
X^2 - 2(a-1)x + (2a+1) = 0
1) Если оно имеет действительные корни, то D >= 0
D/4 = (b/2)^2 - ac = (a-1)^2 - 1(2a+1) = a^2 - 2a + 1 - 2a - 1 = a^2 - 4a >= 0
a(a - 4) >= 0
a <= 0 U a >= 4

Знаки корней.
2) Если a <= 0, то a - 1 < 0
x1 = (-b/2 - √(D/4)) / a = (a - 1 - √(a^2 - 4a)) / 1 = a - 1 - √(a^2 - 4a) < 0
x2 = (-b/2 + √(D/4)) / a = (a - 1 + √(a^2 - 4a)) / 1 = a - 1 + √(a^2 - 4a)
x2 может быть и больше и меньше 0.
a) a - 1 + √(a^2 - 4a) < 0
√(a^2 - 4a) < 1 - a
a^2 - 4a < a^2 - 2a + 1
2a > -1;
-1/2 < a <= 0
b) a - 1 + √(a^2 - 4a) > 0
Аналогично получаем
a < -1/2

3) Если a = -1/2, то c = 2a + 1 = 0, тогда
x^2 - 2(-1/2 + 1)x + 0 = 0
x^2 - 2(1/2)x = 0
x^2 - x = 0
x1 = 0, x2 = 1 > 0

4) Если a >= 4, то a - 1 > 0
x1 = (-b/2 - √(D/4)) / a = (a - 1 - √(a^2 - 4a)) / 1 = a - 1 - √(a^2 - 4a)
x1 может быть и больше и меньше 0.
x2 = (-b/2 + √(D/4)) / a = (a - 1 + √(a^2 - 4a)) / 1 = a - 1 + √(a^2 - 4a) > 0
a) a - 1 - √(a^2 - 4a) < 0
√(a^2 - 4a) > a - 1
a^2 - 4a > a^2 - 2a + 1
2a < -1
a < -1/2 - не подходит, потому что a >= 4
b) a - 1 - √(a^2 - 4a) >= 0
√(a^2 - 4a) <= a - 1
a^2 - 4a <= a^2 - 2a + 1
2a >= -1
a >= -1/2 - подходит для любых a >= 4
Значит, при любом a >= 4 оба корня положительны.
ответ: При -1/2 < a <= 0 будет x1 < 0, x2 < 0
При a = -1/2 будет x1 = 0, x2 > 0
При a < -1/2 будет x1 < 0, x2 > 0
При a >= 4 будет x1 > 0, x2 > 0
При 0 < a < 4 действительных корней нет.
4,4(27 оценок)
Ответ:
Марине1960
Марине1960
05.01.2021
Для начала напишем ОДЗ:
х+1≠0 и х+2≠0, значит
х≠-1 и х≠-2
\frac{ x^{2} - a^{2} }{(x+1)(x+2)} =0 \\ \\ \frac{ (x-a)(x+a) }{(x+1)(x+2)} =0 \\ (x-a)(x+a)=0 \\ 1)x-a=0 \\ x=a \\ 2)x+a=0 \\ x=-a
данное уравнение может иметь два корня
ОДИН корень уравнение имеет в следующих случаях:
1 случай
а=-а
2а=0
а=0
2 случай 
один из корней числителя равен одному из корней знаменателя:
х+а=х+1
а=1
3 случай
х+а=х+2
а=2
4 случай
х-а=х+1
а=-1
5 случай
х-а=х+2
а=-2
при всех данных а уравнение имеет 1 корень.
Отв:а=0; а=1; а=-1; а=2; а=-2 

В этом можно убедиться:
1)пусть а=0, тогда
\frac{ x^{2} - 0^{2} }{(x+1)(x+2)} =0 \\
x²=0
x=0 -1 корень
2) пусть а=1, тогда 
\frac{ x^{2} - 1^{2} }{(x+1)(x+2)} =0 \\\frac{ (x-1)(x+1) }{(x+1)(x+2)} =0 \\\frac{ (x-1) }{(x+2)} =0
x-1=0
x=1 - 1 корень
3) пусть а=-1, тогда
 \frac{ x^{2} - (-1)^{2} }{(x+1)(x+2)} =0 \\ \frac{ x^{2} - 1^{2} }{(x+1)(x+2)} =0 \\\frac{ (x-1)(x+1) }{(x+1)(x+2)} =0 \\\frac{ (x-1) }{(x+2)} =0
x-1=0
x=1 - 1 корень
4) а=2
\frac{ x^{2} - 2^{2} }{(x+1)(x+2)} =0 \\\frac{ (x-2)(x+2) }{(x+1)(x+2)} =0 \\\frac{ (x-2) }{(x+1)} =0
х-2=0
х=2 - 1 корень
5) а=-2
\frac{ x^{2} - (-2)^{2} }{(x+1)(x+2)} =0\\ \frac{ x^{2} - 2^{2} }{(x+1)(x+2)} =0 \\\frac{ (x-2)(x+2) }{(x+1)(x+2)} =0 \\\frac{ (x-2) }{(x+1)} =0
х-2=0
х=2 - 1 корень
4,4(72 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ