В первой задаче надо построить параболу y=x в квадрате рожками вниз (если перед Х стоит знак минус) и на этом же провести прямую линию у=2х-3.
Она по сравнению с у=2х смещена на 3 вниз. Точки пересечения параболы и прямой дадут ответ.
Во второй задаче обычная парабола у = Х квадрат (рожками вверх).
а) отметим на ней тоски (-2,4), (1,1), (3,9)
б) при у=4 х1=-2 х2=2 (две точки (-2,4) и (2,4))
в) это левая ветка параболы: на наибольшее значение у=9, при х=-3
наименьшее значение у=0 при х=0.
Нарисовать не могу - нет сканера.
1)Чтобы найти координаты центра окружности, разделим диаметр на два радиуса, так как они равны, точка О делит диаметр в отношении один к одному, затем по формуле найдём координаты этой точки
Где Хс - координата точки С по оси Х
Ха - координата точки А по оси Х
Хв аналогично
1 в знаменателе это их отношение, также 1 умножается на Хb.
Аналогично и с этой формулой
Тогда координатв центра (точки С) будет (-1;1)
2) Составим уравнение прямой, проходящей через точки А и С, уравнение прямой
Для этого представим обе точки в уравнения и решим систему
Умножим первое уравнение системы на - 4
Из этого получаем уравнение
Отсюда
Если
То поставив это значение в одно из уравнений системы найдём значение К
Следовательно уравнение примет вид
У=-х
3)Чтобы найти уравнение окружность, найдём радиус (его длинну) по координатам
И поставим прежние вычисления в уравнение окружности
Где а и b координаты центра окружности ;
ao=r ;
1)Уравнение окружности
2)Уравнение прямой